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Abstract

Analogical  reasoning  is  usually  seen  as  involving  the  transfer  of  knowledge  from  a
well-known source domain to a less-known target domain. The most successful theory
explaining this transfer of knowledge is the structure-mapping theory. According to this
theory,  the  relational  structures  of  the  two  domains  are  aligned,  and  information  is
transferred from the source to the target  domain on the basis  of  this alignment.  This
alignment  process  is  computationally  expensive  and  depends  on  the  availability  of  a
well-known  source  domain.  Various  theories  of  category  learning  based  on  structure
mapping have been developed. These theories assume that learning takes place through
the comparison and alignment of members of the same category: this alignment allows the
identification of structural commonalities shared by category members. 
This thesis investigates the use of similarity and analogy between members of different
categories during category learning. A series of experiments show that, during learning,
people  make  use  of  similarities  between  members  of  different  categories.  These
experiments  also  demonstrate  that  people  use  analogical  reasoning  in  early  phases  of
learning, when none of the categories being learned are known. This is a problem for
theories of analogy which depend on the availability of a well-known source domain or
concept. A new theory is proposed, in which learning takes place via iterative modification
of  category  representations.  In  this  process  people  learn  by  initially  forming  general
‘partial-categories’  covering  the  items  being  learned;  these  partial-categories  are
subsequently refined to produce full category learning. In this account two categories will
be analogous because they originate from the same partial-category;  this  account  thus
gives  an  emergentist  explanation  for  the  origin  of  analogical  reasoning  in  category
learning. This account also provides for efficient use of the computational and memory
resources  available  during  reasoning.  A  computational  model  which  implements  this
theory  has  been  tested  using  the  same  learning  tasks  given  to  participants  in  the
experiments.  The  model  accurately  reproduced  people's  results,  demonstrating  that
participants tended to reason as the model would predict. 
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Chapter 1

Introduction

Analogical reasoning is the ability to spot similarities between concepts or domains and to

use those similarities  to transfer  knowledge from one concept  to  another.  A common

example of analogical reasoning is the completion of quadruplets like:

Boat : Sea :: Aircraft : ?

Analogy plays a central role in learning, in language, and in everyday reasoning. Some

remarkable cases of analogical reasoning can also be found in the history of science (Del

Re,  2000;  Gentner,  1993;  Hoffman,  1980),  where  it  has  been  used  to  discover  new

knowledge  in  a  partially  unknown domain  being  investigated.  Theories  of  analogy  in

scientific discovery suggest that an already-known 'source' domain similar to the problem

domain is first found and then knowledge is transferred from that source domain to the

problem or 'target' domain (Gentner, 1983). A typical example of analogy being used in

this way is the analogy between structure of the solar system and structure of the atom.

This case is also representative of a third common use of analogy: the teaching of a novel

concept  using  another  well-known  concept  as  a  source  of  knowledge  and  basis  for

understanding.

While  the  standard  view  of  analogy  focuses  on  the  transfer  of  knowledge  from

well-known source domains to novel target domains, in real life most concepts and most
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domains are rarely well known; people, especially children, must often learn domains and

concepts for which no already-known source is available. Can analogy play a role in these

early stages of learning? Can analogies between partially learned target concepts be used

to  facilitate  learning?  How  would  analogical  reasoning  operate  in  this  type  of  early

learning situation? In this thesis I aim to address these questions.

One  possible  advantage  of  the  early  use  of  analogical  reasoning  is  clear:  instead  of

learning  several  concepts  separately,  a  learning  process  that  uses  analogies  between

partially learned concepts can minimize the cost of learning, both in terms of memory and

time.  If  domains  are  learned  separately  with  no  identification  of  between-domain

analogies,  then  any  common  elements  or  structures  shared  across  domains  will  be

represented one time for each domain. If analogies between domains are identified during

learning,  however,  those common elements need be represented once only,  decreasing

memory  load.  Similarly,  if  analogies  between  partially  learned  domains  are  identified

during learning, then understanding gained about one domain can be applied to the other

domain, decreasing learning time. My first hypothesis, therefore, is that

1. analogy  will  be  used  to  facilitate  learning  between  simultaneously-learned

categories.

There are at least two possible ways in which analogy can be used when simultaneously

learning categories with similar structures. One is by using mutual alignment (Kurtz &

Loewenstein, 2007; Gentner, Loewenstein & Thompson, 2003; Kurtz, Miao, & Gentner,

2001) and thus structure mapping to transfer knowledge between the similar categories

been  learned.  The other  way does  not  require  structure  mapping  and consists  of  two
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phases  where  partial  categories  are  first  formed  and  then  refined  to  create  the  final

categories. Therefore there are two alternative hypotheses:

2a. Categories  are  first  learned  and  then  compared  and  mutually  aligned  using

structure mapping; or

2b. Learning consists  of  two phases where one or more partial  categories are first

formed and then refined, so from each partial category stem some final categories. 

If the hypothesis 2a is found to be correct, the existing theories and models of analogical

reasoning in category learning are already sufficient to explain the results, and need only to

be  extended  to  account  for  similarities  between  categories.  Progressive  alignment

(Kuehne, Forbus, & Gentner, 2000) will be used not only to compare the exemplars of

the first category learned, but after it is learned, also to compare the exemplars from the

other category. If this is the case, then one category is first learned and then continuous

comparison takes place and mutual alignment and structure mapping are used to learn the

other  similar  categories.  Therefore  a  direct  comparison of  items of  similar  categories

should help learning, and the experiments will test this prediction.

Hypothesis  2b on the opposite expects  that  in  order to unify the learning of multiple

categories, the learning process occurs in two phases, with a first phase of partial learning

followed by a phase of refinement. In the first phase some general "partial categories" are

formed, representing sets of similar categories; in the second phase these partial categories

are modified or refined in order to arrive at the final categories or concepts being learned. 
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In  this  thesis  "partial  categories"  refer  to  drafts  of  categorization  criteria,  which  can

confuse between categories and which consequently will sometimes classify items in the

wrong category. According to hypothesis 2b, partial categories can be further modified

and refined to become "final categories", i.e. categorization criteria which always classify

items in the right category.

This process of partial learning minimizes the memory and time effort while maximizing

the amount of information extracted in each stage. Because of this advantage, I expect

that  people  tend  to  find  similar  classification  criteria  even  when  easily  discriminable

criteria  are  available.  This  contrasts  with  standard  views  of  categorization,  and  with

machine learning models of learning, which predict that easily-discriminable categories

are more easily learned (Doumas & Hummel, 2005; Kuehne, Forbus, & Gentner, 2000;

Muggleton, 1991; Nosofsky, Palmeri, & McKinley, 1994).

This two-step process gives an emergent explanation for the origin of analogical reasoning

in category learning: in this explanation, categories are seen as similar, and so analogous

to each  other,  because  they  stem from a common partial  category,  and  were  learned

together as part of that category.

A series of specific predictions come from these hypotheses. The following predictions

will refer to an hypothetical experiment with four categories: two defined by numerical

relations  between  their  compositing  elements  (e.g.  in  one  category  "same  number  of

squares  and  triangles",  in  the  other  "twice  as  many"),  the  other  two  by  some  other

non-relational criteria (e.g. presence of some distinctive element: a circle or a star). 
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The predictions are that, when people are learning multiple categories simultaneously 

A) According  to  hypothesis  1,  there  is  a  connection  between  the  learning of

structurally similar categories. According to the example, time between learning of

the two "numerical" categories  will  be  less than time between learning of one

"numerical" category and another non-relational category.

B) According to hypothesis 2a, the simultaneous presentation of items from similar

categories should facilitate learning. So for example if we present  simultaneously

exemplars from the "numerical" categories to a group of participants, they will

take less to solve the test than another group presented with one exemplar at a

time.

C) According  to  hypothesis  2b,  before learning is complete, any errors in

categorisation are not random but they are more frequent across similar categories.

So  for  example  it  is  more  probable  to  answer  that  an  exemplar  from  one

"numerical" category pertains to the other "numerical" category, than it pertains to

one of the other two remaining categories.

D) According to hypothesis 1, even if given alternative solutions, people find solutions

which have similar structures rather than different structures,  when  learning

multiple concepts.

E) According  to  hypothesis  1,  relational similarity helps learning, in respect to

categories defined simply by features. In the example, the "numerical" categories
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would  be  learned  first,  although  they  may  be  more  complex  than  the  other

non-relational categories.

To test these hypotheses and predictions we need a task in which novel similar concepts

are learned simultaneously. One candidate is a category-learning task in which some of

the categories are structurally similar.  Current theories of analogical  category learning

assume that learning takes place through the comparison and alignment of members of the

same category: this alignment allows the identification of structural commonalities shared

by category members (Kuehne et al., 2000). The role of analogies between categories has

not been investigated in the literature to date.

In order to have categories with analogical similarities between them (similarities that can

be exploited using analogical  reasoning),  those categories  must  be defined not just  by

features, but by relations. This is the case with categories such as "pilot", "captain", and

"driver"; these categories are defined by the relation of their  instances  with vehicles, the

relations with the other people, the environment, and so on. These relations are similar,

thus one category can be easily mapped onto another using analogical reasoning. In testing

the role of analogical reasoning in the simultaneous learning of multiple novel categories, I

will design a number of novel artificial categories with this type of relational structure. A

series of experiments will examine how people learn these categories.

1.1. Organization of the Thesis

A review of the current literature is presented in Chapter 2. This highlights the lack of a

theory and a model for the early use of analogy during learning of novel similar concepts.
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Experiment 1 is described in Chapter 3. This experiment investigates whether or not the

simultaneous  presentation  of  instances  of  categories  with  similar  structures  facilitates

learning,  as the structure mapping theory predicts.  The experiment also investigates if

learning of similar categories is related, and if partial categories are formed in the early

stages of learning. The aim is to determine if the learning of one category is independent

from the learning of another similar category or if instead the learning of the two are

connected. The results of this experiment will help us to determine if analogical reasoning

starts to operate even before complete learning of any category has taken place.

Experiment 2 and experiment 3 are presented in Chapter 4 and Chapter 5 respectively.

These experiments will confirm the results from the first experiment. In addition, they will

also test the prediction that even if given alternative solutions, people find solutions which

have similar structures rather than different structures.

It  will  be  shown  that  the  current  models  of  category  learning  and  analogy could  be

adapted to explain the results of the experiments, but the existence of partial learning

opens  the  way to  a  new theory  and  a  new model,  based  on  the  formation  of  partial

hypotheses  and  their  subsequent  refinement. A new theory  of  analogical  reasoning  in

category learning will be proposed and instantiated as a computational model in Chapter

6. This new theory is based on the modification of concepts and their refinement through

subsequent stages. The computational parsimony of this new approach is also shown, and

the plausibility of the theory is confirmed by a computational model based on this theory.

It will be shown that this computational model is able to reproduce the results from the

participants in the experiments, and to predict their learning patterns. This model provides

7



the  same  answers  to  the  same  category  instances  as  given  by  participants  in  the

experiments.
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Chapter 2

Background research

2.1. Introduction

This thesis considers the simultaneous learning of similar concepts in the absence of any

background knowledge. The first hypothesis of this thesis is that:

1. Analogy  can  be  established  between  simultaneously-learned  categories  with

similar structures, to aid the learning of both categories.

As said in Chapter 1, there are at least two possible ways in which analogy can be used

when simultaneously learning categories with similar structures. From those derive two

alternative hypotheses:

2a. Categories  are  first  learned  and  then  compared  and  mutually  aligned  using

structure mapping; or

2b. Learning consists  of  two phases where one or more partial  categories are first

formed and then refined, so from each partial category stem some final categories. 

As  said  previously,  in  this  thesis  "partial  categories"  refer  to  drafts  of  categorization

criteria, which can confuse between categories and which consequently will  sometimes

classify items in the wrong category. According to hypothesis 2b, partial categories can be
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further modified and refined to become "final categories", i.e. categorization criteria which

always classify items in the right category.

This thesis will present three experiments which will test these hypotheses. In order to

study these  hypotheses  and  eventually  build  a  computational  model,  there  are various

academic fields from which draw useful knowledge.

The  first  hypothesis  requires  that  analogy  can  be  used  to  learn  structurally  similar

categories which are both unknown and which are learned simultaneously. Studies about

analogical reasoning, relational categories and simultaneous learning of categories will be

therefore used. To test the first hypothesis the experiments will need to show that learning

of  similar  categories  is  related.  In  other  terms,  that time between learning of similar

categories is less than time between learning of dissimilar ones. To further test the first

hypothesis the experiments can also show that people tend to find similar criteria even if

they are given the opportunity to find alternative criteria.

Hypothesis  2a  expects  that  a  continuous  comparison  takes  place  and  that  mutual

alignment  and  structure  mapping  are  used  to  progressively  align  (Kuehne,  Forbus,  &

Gentner, 2000) exemplars1. Therefore a direct comparison of items of similar categories

should help learning, and the experiments will test this prediction. This chapter will thus

include  studies  about  structure  mapping,  mutual  alignment  and  direct  comparison  of

similar items. Studies about relational categories learning models will be also presented

because  if  the  hypothesis  is  correct  these  models  could  be  extended  to  be  able  to

simultaneously learn similar categories using mutual alignment.

1 It should be noted that the current theories about progressive alignment only predict its use between
exemplars of the same category, although these theories can be expanded.
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Hypothesis 2b expects that partial classification criteria can be created and then refined.

The experiments will  therefore test if a first phase of "partial learning" (i.e. confusion

between similar categories) will be followed by a second phase of "final learning". Studies

about the modification of concepts, the "theory theory" and some other machine learning

models (such as the Inductive logic programming -  Lavrac & Dzeroski, 1994; Muggleton,

1991; Muggleton & Raedt, 1994) will be consequently presented in this chapter. Given

that the partial  learning can occur without the person being conscious of that, studies

about implicit learning will be also presented.

Since  this  work  is  mainly  about  analogical  reasoning,  the  existing  literature  will  be

selected to include only studies pertaining to analogy, structural relations,  comparison,

similarities, transfer of knowledge, predicate-based machine learning models, etc. Some

other  studies  in  related  fields  (e.g.  the  "prototype  vs.  examples  vs.  rules"  debate  in

category learning, or the "attribute-value learners") will be only briefly presented for sake

of completeness, although not pertaining to the core of this work.

2.2. Analogical Reasoning in Category Learning

2.2.1. The Standard View of Analogical Reasoning

Gentner's (1983) paper lays the foundations of studies on analogy, and in fact it has been

cited  more  than  2000  times  according  to  Google  scholar.  This  paper  establishes  the

classical theory of analogy known as “structure-mapping theory”. Based on this theory,

analogy is clearly distinguished from other types of comparisons, such as literal similarity

and abstraction. This theory is based on some important distinctions between types of
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predicates. The first distinction made is that between object attributes and relationships;

the second one is between first-order predicates (taking objects as arguments) and second-

and  higher-order  predicates  (taking  propositions  as  arguments).  Starting  from  that

distinction, the structure-mapping theory features two fundamental rules:

1. Relations between objects, rather than attributes of objects, are mapped from the

base domain to the target domain, which means that analogy doesn’t affect the

specific content of the domains.

2. In analogy, not every single predicate is mapped from a domain onto another. The

particular relations chosen are determined by “systematicity” (see Gentner, 1983),

with  higher-order  relations  that  connect  the  lower-order  relations  into  an

interconnected structure that can be described as a system of relations.

Starting from the classical studies by Gentner (1981, 1983) quite an amount of literature

has been produced based on the idea of analogical reasoning as a transfer of knowledge

from a well-known domain to another less well-known one (e.g. the solar system and the

atom). According to this idea, analogy is a higher-order type of reasoning, as can be found

in some cases of scientific discovery. The process allows the common structure between

two domains to be exploited. One structure is methodically mapped onto the other, in

order to find the items in the target which correspond to the roles inferred from the base

domain. It seems therefore impossible, according to this theory, that analogy can occur

between two partially understood domains, which is instead what is expected according to

my first hypothesis.
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2.2.2. SME

Gentner’s  structure-mapping  theory  has  been  implemented  in  the  “structure-mapping

engine” (Falkenhainer, Forbus, & Gentner, 1986). The structure-mapping engine (SME)

uses an algorithm specified by a set of “constructor rules” and “evidence rules”. It begins

with a large set of random matches that are gradually screened into one or few structurally

consistent  mappings  between  a  given  base  and  a  target.  It  also  provides  a  structural

evaluation for each mapping, according to the constraints of systematicity and structural

consistency, which define and distinguish analogy from other kinds of inference. 

For some cases (such as scientific discovery) this is a useful and maybe common way of

making analogies. But it is difficult to see how it can work in the common situation in

which there  isn't  a complete source of knowledge from which carry out the mapping

process.  Anyway,   Thibaut,  French  & Vezneva  (2010)  mentioned  the  likelihood that

analogy can happen between concepts,  also if  the knowledge of the structure of both

concepts increases during learning. Also the theorization of mutual alignment (see below)

seems to partially overcome this problem.

2.2.3. Simultaneous learning

In recent years it has been suggested (Kurtz & Loewenstein, 2007; Gentner, Loewenstein

&  Thompson,  2003;  Kurtz,  Miao,  &  Gentner,  2001)  that,  in  problem  solving,  the

simultaneous  presentation  of  two  partially  understood  problems  can  produce  a  better

understanding of  both.  These studies  importantly  highlight  the role  of  comparison of

similar problems in order to encode a representation of a higher-order abstract problem.
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Kurtz,  Miao and Gentner (2001) propose an alternative to the standard base-to-target

mapping paradigm, which they call mutual alignment. But as they say:

Mutual alignment can enhance understanding, but there must be at least rudimentary prior

knowledge to make two-way information transfer possible. Learning by mutual alignment can

succeed without analogical retrieval, but it is not bootstrapping from ground zero.

 (Kurtz, Miao, & Gentner, 2001)

Besides, in order to foster mutual alignment participants must be actively stimulated to do

so by joint presentation, listing similarities, joint interpretation and other techniques. 

The  study  carried  out  by  Gentner,  Loewenstein  and  Thompson  (2003)  shows  that

“analogical  encoding  -  comparing  two  instances  of  a  to-be-learned  principle  -  is  a

powerful means of promoting rapid learning, even for novices”. In particular, this study

tested whether analogical encoding could improve novices’ ability to transfer principles

learned  from examples  to  actual  negotiation  problems.  “In  accord  with  the  analogical

encoding hypotheses, novices learned and transferred better when they were instructed to

compare the study cases”, which provided evidence that “analogical encoding fosters the

extraction of the common relational schema inherent in the cases and that this in turn

promotes the ability to transfer the knowledge to new cases”. Therefore it can be “effective

even early in learning, when learners may lack knowledge of an appropriate base domain”.

This  idea  hasn't  been  developed to  account  for  the  use  of  analogy  in  simultaneously

learning of similar novel categories.  The experiments in this thesis will address this gap.

Hypothesis 2a tests if mutual alignment is used during simultaneous learning of similar

categories.  In  order  to  foster  mutual  alignment  the  experiments  will  use  the  direct
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comparison of items (see below for other studies). According to the above studies, the

comparison of  items from similar  categories  should help learning by allowing  mutual

alignment.

2.2.4. Modification of Concepts

In a small study Clement (1981) hypothesized the modification of concepts in problem

solving.  Some  participants  in  his  experiment  mentioned  that  they  modified  a  known

problem in order to adapt it to match a novel one. In that case, analogy proceeded through

modification instead of structure-mapping.

Another study which uses the idea of modification of concepts is Hahn (2003). This study

aims  to  measure  the  similarity  between  known  concepts  using  the  quantity  of

transformations needed to transform one object into another one. Participants were shown

pairs of exemplars composed of shapes which could be transformed one into the other,

using one ore more geometric transformations (e.g. stretching, moving, rotating, change

the fill, etc.). They were asked to rate how similar were the two exemplars. Although this

study was only about measuring the similarity of known objects, its core concept could be

used to test the use of transformations in learning. 

Kokinov (2007) also proposes the idea of modifying concepts using re-representation, in

order to form analogies.  Yan, Forbus & Gentner (2003) suggest  that  re-representation

could be done through structure-mapping, while other studies (Keane, 1995, 1997; Keane,

Ledgeway,  &  Duff,  1994)  propose  that  the  learning  of  classification  criteria  is

incremental.
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If  the  hypothesis  2b  will  be  found  correct,  the  computational  model  will  need  an

algorithm for the modification of its formed partial hypotheses. Although this algorithm

could be one of the complex and intelligent algorithms briefly reviewed in this chapter, the

model should use a more trivial algorithm of random modification. The reason for this

choice is that if a model can reproduce the participants' results with a simple modification

algorithm, it would only work better with more intelligent modification algorithms, such

those presented in this chapter.

2.2.5. Comparison of similar items

Some studies (Gentner & Medina, 1998; Gentner & Namy, 1999) have investigated the

role of similarities within a category. They proposed that items of the same category are

compared  and mapped onto  each  other  in  order  to  extract  the  common structure.  In

particular, Gentner & Medina asked children and adults to learn relational concepts. They

presented their subjects with exemplars, and also helped them by labelling the exemplars.

They hypothesize that learning happens through the juxtaposition and the comparison of

the shown exemplars, allowing to abstract the common structure: 

Comparison is very often the critical path in the development of rules, especially early in

development when higher-order knowledge is  sparse and requires the support of  concrete

commonalities. 

[...]  at  any age,  structural  alignment  provides  the  necessary bridge  in  applying rules  and

abstract knowledge to ongoing experience. Comparison is fundamental to the development

and use of rules in cognition.

(Gentner & Medina, 1998)
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On the other hand, Gentner and Namy (1999) examined the categorization behaviours of

4-year-old children “when asked to  select  a match for  a target  object  (e.g.,  an  apple)

between a perceptually similar,  out-of-kind object (e.g.,  a  balloon) and a perceptually

different category match (e.g., a banana)”. They concluded that 

[…] children who learn a novel word as a label for multiple instances of the category are

more likely to select the category match over the perceptual match. Children who learn a label

for only one instance are equally likely to select either alternative. This effect is present even

when individual target instances are more perceptually similar to the perceptual choice than to

the category choice

(Gentner & Namy, 1999)

Which means that a structural alignment process (invited by the common linguistic label)

yields a deeper, more conceptual encoding. 

Many  studies  followed  (e.g.  Boroditsky,  2007;  Oakes,  Kovack-Lesh,  Horst,  2009;

Kotovsky & Gentner, 1996), showing that the comparison of similar items helps learning.

Namy & Gentner (2002) for example showed that 

[...]  comparison  facilitates  categorization  only  when  the  targets  to  be  compared  share

relational commonalities. 

(Namy & Gentner, 2002)

An amount of studies (e.g. Waxman & Klibanoff, 2000; Gentner, Loewenstein & Hung,

2007; Gentner & Namy, 2006; Gelman, Raman & Gentner, 2009) investigated the role of

language in structural  alignment  and learning,  showing that  the comparison of  similar

items helps a deeper understanding by promoting analogical encoding.
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2.2.5.1. Pairwise presentation

Some other studies (Kurtz & Gentner,  1998; Kurtz & Boukrina,  2004) show that  the

pairwise presentation of similar items fosters the comparison and the mutual alignment

using structure mapping, and thus facilitates learning. In particular, Kurtz and Boukrina

(2004) conclude that

[…]  when  task  constraints  emerge  that  engage  the  learner  to  apply  the  machinery  of

comparison, superior performance in learning relational categories is achieved. These findings

are most naturally understood in terms of learning to construct richer, more sophisticated

encodings  of  category  instances.  While  this  is  a  difficult  process,  it  is  made  easier  by

comparison.

(Kurtz & Boukrina, 2004)

The experiments in the present work will  therefore use direct comparison of items of

structurally  similar  categories  to  test  if  mutual  alignment  done  by  structure  mapping

facilitates  learning  also  in  the  case  of  structurally  similar  categories  simultaneously

learned. 

2.2.5.2. Within vs. Between categories similarities

All of the studies presented above investigate the similarities between items of the same

category, which can be called “within category” similarities. But also the classification

criteria of distinct categories can be structurally similar. This is the case of a more general

case of similarity, which can be called "between category" similarity.

The "between category" case of similarity has been usually neglected in the literature,

apart  for  a  few  cases  related  to  problem  solving.  As  mentioned  above,  it  has  been
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proposed  (Kurtz  &  Loewenstein,  2007;  Kurtz  et  al.,  2001)  that  solving  two  similar

problems can facilitate learning, and it has been recently studied (Hammer, Diesendruck

et al, 2009) the case of the simultaneous learning of categories with similar and dissimilar

features,  but  it  has  never  been  generalized  to  the  learning  of  categories  with  similar

structures, which can be thus learned also using analogy.

In order to fill this gap, this thesis will investigate the case of similarities between different

categories, all learned simultaneously.

2.3. Rules and Relations in Categories

In order to investigate my hypotheses, categories with similar relational structure will be

needed. It is thus interesting to review previous works about relational categories, and how

they can be learned.

2.3.1. Relational Categories

Relational categories have been defined as categories "whose membership is determined

by a common relational structure rather than by common properties" (Gentner & Kurtz,

2005).  "Passenger",  "bridge"  or  "barrier"  are  examples  of  relational  categories.  An

amount of literature has been already produced on relational categories. The experiments

will use this type of category because it is easier to create relational classification criteria

with structural similarities between different categories.
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2.3.1.1. The Learning of Relational Categories

There have been various approaches to categorization, based on prototypes, examples or

rules.  Since I  will  use relational  categories,  the approach that  is  most suitable  for  my

research is the rule-based approach, with rules defined by predicates. A brief review of the

various approaches will show why the alternatives are not suitable for relational categories.

The  debate  on  whether  categories  are  defined  by  prototypes  (Rosch,  1978),  stored

examples (Nosofsky, 1988) or rules (Nosofsky et al., 1994) is still active (Feldman, 2003),

but in recent years it has been proposed that distinct neural systems are responsible for the

different  strategies (Ashby et  al.,  1998;  Ashby & Maddox,  2005;  Smith,  Patalano,  &

Jonides, 1998). It is therefore possible that all of these approaches are generally used by

people,  and  the  best  suited  for  the  specific  problem  encountered  is  chosen,  as  also

suggested by Greg Murphy (2002).

For the specific kind of problems studied in this work, which have categories defined by

relations, it is clear that only a representation based on predicates can be used. In fact, the

prototype approach cannot work with categories defined just by relations, since different

members can share no features. No prototype can thus exist for these kind of categories.

The  example-based  approach  would  require  a  huge  amount  of  memory,  since  many

distinct members of the category must be learned (each very different from the others). It

has been proposed both that rules are defined just as boundaries in the representational

space,  and  that  they  are  defined  as  more  complex  predicates.  The  boundaries-based

approach  cannot  explain  the  learning  of  relational  categories,  since  for  many  such

categories  there  aren't  clear  boundaries  in  the  representational  space.  In  contrast  the
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predicate-based approach,  as  used  for  example  by Inductive  Logic  Programming (see

below)  is  more  general  and  can  model  every  kind  of  category,  including  relational

categories.

If hypothesis 2b will be found correct, the computational model which will be built will

need  a  flexible  representation  of  categories,  and  the  predicate-based  approach  is  the

perfect candidate.

It is therefore important to contrast the classic "rules as boundaries" approach (Nosofsky

et  al.,  1989)  and  the  "rules  as  predicates"  approach  (Muggleton,  1991),  as  explained

above.  The  "rules"  that  the  computational  model  will  use  are  not  boundaries  but

predicates (see the Inductive Logic Programming section). 

2.3.2. The "theory-theory"

The so-called "theory-theory" started as an explanation of children's early conceptions of

the mind (Gopnik, 1984, 1988; Butterworth, Harris, Leslie & Wellman, 1991; Astington,

Harris  &  Olson,  1988;  Frye  &  Moore,  1991),  and  was  in  fact  also  referred  to  as

"children's theory of mind". In summary, it stated that children form and change theories

about other people's mental states.

But the idea that the formation and modification of theories (like in science) is central in

human  cognition,  was  also  extended  from  the  theorization  on  people's  minds  to  the

theorization on the rest of the world, and from children to all human beings:
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[…] knowledge is structured in a theory-like way, and […] knowledge changes in a way that

is analogous to theory change in science.

(Gopnik, 2000)

According to this idea, categories are defined by theories, and as theories can undergo

revising, so do the classification criteria, by a scientific process:

[…] A theory postulates a complex but coherent set of causal entities, the theoretical entities,

and specifies causal relations among them, the laws. Just as a spatial map allows for new

predictions and interventions in the world, so a causal map allows for a wide range of causal

predictions and interventions, including experiments. And just as theories are revisable in the

light of new experience, rather than hard-wired, so causal maps, like spatial ones, can be

updated and revised .

[…] it is part of the very nature of theory formation systems that they are perpetually in flux.

(ibidem)

The hypothesis 2b is coherent with these ideas, and in fact it predicts that hypotheses are

created and then tested and refined. The model which could be built based on hypothesis

2b,  should  therefore  take  into  account  the  "theory  theory".  The  classification  criteria

implemented by the model should have a theory-like structure, which can be tested and

revised and if needed discarded.

2.3.3. Implicit learning

Learning  is  considered  to  be  implicit  when  people  acquire  new  information  without

intending to do so, and in such a way that the resulting knowledge is difficult to express

(Berry & Dienes, 1993). However, the debate on what exactly implicit learning is and how

exactly it works is going on since thirty years. It is largely debated, for example, the extent
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to which Implicit learning produces unconscious and/or abstract knowledge, or the extent

to which Implicit learning uses independent memory and processing systems (Cleeremans,

Destrebecqz & Boyer, 1998).

Implicit  learning  experiments  have  usually  three  components:  1.  exposure  to  some

complex rule-governed environment under incidental  learning conditions;  2.  a  measure

that tracks, through performance on the same or on a different task, how well subjects can

express their newly acquired knowledge about this environment; and 3. a measure of the

degree  to  which  subjects  are  conscious  of  the  knowledge  they  have  learned.  The

paradigms, built  on these components,  which have been largely explored are:  artificial

grammar  learning  (Reber,  1989,  1993),  sequence  learning  (Reed  &  Johnson,  1994;

Lewicki, Hill & Bizot, 1988), and dynamic system control (Berry & Broadbent, 1984). 

A large debate exists also about the neurological bases of implicit vs. explicit learning

(Ashby & Casale, 2003). Amnesic patients are for example widely used to test implicit

learning (Knowlton, Ramus & Squire, 1992; Reber & Squire, 1994), and neuroimaging is

used to understand which brain areas are specifically involved under different tasks or

instructions (Raush et al. 1995; Hazeltine, Grafton & Ivry, 1997; Berns, Cohen & Mintun,

1997).

In case hypothesis  2b is  proved correct,  the two-phase account  of  learning opens the

possibility that implicit learning occurs. In fact, while subjects are explicitly instructed to

learn the "final" categories, the resulting middle phase of partial learning is something that

can occur without the subjects being consciously aware.
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I am not interested in knowing if the learning of partial categories is explicit or implicit.

For some people it might be explicit while for others it might be implicit; this is not the

key point of this study. 

It was nevertheless interesting to point out, for future research, the fact that if people learn

what we propose as "partial categories", they could learn them in an implicit way, without

being conscious of that (partial) learning. 

2.3.4. Existing models

It has already been suggested that analogical reasoning can be used during the learning of

categories.  The  two  most  interesting  models  of  category-learning  using  analogical

reasoning are SEQL (Kuehne et al., 2000) and DORA (Doumas & Hummel, 2005).

If  hypothesis  2a will  be found correct,  these models could be extended to be able to

compare items of different categories in order to mutually align them and extract all the

available information to help learning.

2.3.4.1. SEQL

Kuehne et al. (2000) propose to extend the existing SEQL model (which is a model of

abstraction-making using structural alignment - Skorstad, Gentner, & Medin, 1988) with

a  new algorithm,  called  GEL (Generalization  and  Exemplar  Learning).  The  extended

model is able to learn relational categories from examples, through an iterative process of

abstraction. The GEL algorithm is the core of this model; it has a memory for examples

and generalizations. When a new example arrives, it tries to compare it, using the SME
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engine, to the stored examples and generalizations. If the new example is similar enough

(compared to a pre-set threshold) to a stored example or generalization, GEL creates a

new generalization  with  the  structural  overlap.  In  this  way  it  is  able  to  progressively

abstract  categories  from examples.  Learning is  not  supervised;  this  model  doesn't  use

labels to check if its deductions are correct. It just produces its best guesses on how the

presented examples could be categorized.

This  implies  that,  in  order  to  be  found,  the  categories  must  have  definitions  whose

structures  are different  enough to  be discerned.  If  two categories  are  too similar,  the

model would find only one general category. This is the most important limitation, in the

light of the present study. In fact, the present work investigates analogy between similar

categories. SEQL would be mislead by its use of analogy, instead of being helped. But

with some extensions and tweaking the model could be adapted to be able to use mutual

alignment also between categories.

2.3.4.2. DORA

In 2005 Doumas and Hummel proposed extending the LISA model (Hummel & Holyoak,

2003)  to  make  it  able  to  discover  new relations.  DORA (Discovery  Of  Relations  by

Analogy) is the resulting model (Doumas & Hummel, 2005). It is not a model of category

learning, since it can learn only one concept at a time. It is however interesting to briefly

present it (due to its complexity, an exhaustive presentation would be too long), since it is

the  most  interesting  alternative  explanation  of  the  use  of  analogical  reasoning  in  the

learning of new abstract relational concepts.
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DORA (and LISA) represents propositions in a hierarchy of units. At the bottom there are

semantic units, which represent concepts in a distributed manner. At the next level there

are token units which represent specific relational roles and objects. So, for example, in a

proposition  like  "the  cat  chases  the  mouse",  the  roles  "chaser"  and  "chased"  are

represented at this level, as well as the specific objects "the cat" and "the mouse". The

object "cat" would be connected to a set of semantic units representing its features (e.g.

"has fur", "four-legged"), while the role "chaser" would be connected to other semantic

units. At the third level there are role-binding units, which encode the bindings of specific

roles ("chaser") to specific fillers ("cat"). At the top of the hierarchy there are proposition

units  which  bind  sets  of  role-bindings  ("cat-chaser",  "mouse-prey")  into  complete

relational structures.

The  novelty  of  DORA,  with  respect  to  LISA,  is  that  it  is  able  to  compare  distinct

propositions (i.e. distinct structures of this hierarchy) in order to create new knowledge. If

some semantic units "fire" in both the propositions, a new role unit is created and bound

to the common units. From these new units, new role-binding units and even new abstract

proposition units can be created.

The main limitation of DORA is that it can only learn one concept at a time, and only by

comparing two examples. It could be possible to extend DORA to make it able to learn

more than one category. Even doing so, when presented with examples from categories

with similar structures (as in this present work), DORA would probably learn, like SEQL,

only one general category. Due to its functioning, it would be confused by the similarities

between the categories, instead of being helped by these similarities. As for SEQL, with
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the right extensions DORA could do mutual alignment and simultaneously learn similar

categories.

2.3.4.3. Summary

Some  theories  and  models  have  been  already  proposed  dealing  with  the  learning  of

relational categories using analogy. The common characteristic of the proposed models is

that  they  are  based  on intersection  discovery:  a  schema is  learned  from examples  by

keeping what the examples have in common and discarding details on which they differ.

The result is some kind of predicate that describes the common relations of the examples.

The common limitation of the existing models is that, although some of them can exploit

structural  similarities  within categories,  when faced with similarities  between concepts

they would be confused by them. If hypothesis 2a will be found correct, these models

could be extended so to not be confused by those similarities and instead use mutual

alignment to help learning. 

2.4. Machine Learning

The idea that underlies all of this work is that exploiting the similarities between novel

concepts  can  facilitate  learning,  by  minimizing  the  required  time  and  memory  and

maximizing the amount of used information. This attempt at optimization is common in

many satisficing machine learning models. Many models of analogical reasoning (e.g. the

"structure-mapping engine" - Falkenhainer, Forbus & Gentner, 1986) avoid the problem

of memory and time constraints. Because some ideas will be borrowed from the domain

of machine learning, a brief review is given in the following.
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2.4.1. Attribute-Value Learners

A field very close to the kind of reasoning investigated in this work, is Inductive Learning.

With this description are grouped all the models that learn general concepts by inductive

inference, from (relatively) few examples. There are many such models. This section is

about  the models  which  classify  items according to  the  values  of  their  attributes,  for

example Star (Michalski, 1983) or ID3 (Quinlan, 1986). The next section is dedicated to

models which classify items according to relations.

2.4.1.1. Star

Michalski's model is  based on a process of analysis of the presented items'  attributes,

generation  of  generalizations  and  subsequent  restructuring  of  those  generalizations.

Although  it  uses  predicates  to  represent  the  concept  generalizations,  the  actual

implementation includes only attributes and logical operation (e.g. colour = black AND

shape != triangle). Given this limitation, Star isn't able to learn relational concepts, unless

relations  are represented  as  attributes.  More  recent  models  (discussed  below)  can use

more complex predicates, which include relations. 

Because the method of partial learning and restructuring can be used to optimize the used

memory, in case a model based on hypothesis 2b will be built, the model will borrow this

method.
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2.4.1.2. ID3

Quinlan's model generates a decision tree, based on the presented items. Since with big

training sets the quantity of all the possible decision trees is impossible to handle, ID3

starts with a random subset, and chooses the simplest tree to correctly classify the items in

the subset. Then it tries to classify some other items and iteratively includes in the subset

the misclassified items, which allow it to correct the original tree. Therefore, also this

model uses some kind of partial learning and refinement, as expected by hypothesis 2b.

However,  decision  trees  are  based  on  attributes,  and  are  therefore  not  suitable  for

relational learning, unless relations are represented as attributes.

2.4.2. Relational Learners

Another  class  of  learning  algorithms,  called  "relational  learners",  in  contrast  create

descriptions  of  relations.  These  descriptions  are  generally  represented  as  predicates,

which, unlike the ones used by Star, can express relations.

An important example is the class of "inductive logic programming" learners (Lavrac &

Dzeroski, 1994; Muggleton, 1991; Muggleton & Raedt, 1994). These systems are based

on  logic  predicates,  which  are  generated  (through  quite  complex  and very  optimized

systems) by induction, starting from examples. Many models have been developed, but

they all share the same macro-algorithm, as stated by Muggleton and Raedt (1994). It is

an iteration of  creation of  hypotheses  (in  the form of predicates)  and pruning of  the

existing hypotheses, until  the remaining predicates are able to correctly classify all the

items. 
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Some models follow a "specific-to-general" pattern.  They start  from the examples and

background knowledge, and repeatedly generalize their hypotheses by applying inductive

inference rules. One limit of these models is that these rules are very complex inference

logic rules, which typical people rarely use. Another limit is that they follow only one

direction of reasoning. 

Another class of models follow the inverse pattern: "general-to-specific". They start with

the most general  hypothesis (i.e.  the inconsistent clause) and repeatedly specialize the

hypothesis by applying deductive inference rules in order to remove inconsistencies with

the negative examples.  These models have the same limits as the "specific-to-general"

ones:  the  inference  rules  they  use  are  too complex,  and  they  can  only  reason  in  one

direction.

There are also some models which are able to reason in both directions, which in my

opinion is the most sensible strategy. Nevertheless, they still have the problems of using

very complex inference rules, which aren't used by typical people. 

As already hypothesized above (paragraph on the modification of concepts), if hypothesis

2b will be found correct, the model will use a more trivial algorithm for the modification

of hypotheses, that is random modification. If the model will be able to reproduce the

participants' results with a simple modification algorithm, it would only work better with

more intelligent modification algorithms like inductive or deductive inference rules.
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2.4.3. Summary

Given the relational nature of my experiments, inductive logic programming would be a

good candidate to build a model based on hypothesis 2b. Unfortunately, all the algorithms

proposed in the past years are too perfect learners and use too complex logic, compared to

human beings. They have been developed to optimize the performance on computers and

to  exploit  machines'  innate  logic,  not  to  be  psychologically  plausible.  Moreover,  the

inductive  logic programming algorithms aren't  able  to  exploit  the similarities  between

categories: each category is learned independently. 

Nevertheless,  the  computational  model  could  borrow  many  concepts  from  machine

learning and from inductive logic programming. For example, the proposed model could

use  intensive  descriptions  (i.e.  predicates)  to  represent  hypotheses.  The  concept  of

"heuristic" can also be borrowed from machine learning, although the heuristics used are

very simple compared to the heuristics of the other common algorithms. Apart from some

basic heuristic  for  hypothesis  testing,  the heuristic  at  the core of  the model  could be

phrased as "find partial hypotheses and reuse/refine them as soon as possible". As shown

in Chapter 6, this heuristic can give birth to analogical reasoning in an emergentist way,

and can exploit the simultaneous-learning of similar categories.

Some other basic  aspects of machine learning can be also borrowed by the proposed

model. It could learn partial rules and iteratively refine them. In contrast to many machine

learning  algorithms,  the  modification  of  hypotheses  should  go  in  any direction  (while

usually it is either "general-to-specific"or "specific-to-general", rarely both). 
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2.5. Conclusions

In this chapter previous works in fields related to this theses have been reviewed to show

how they are related, what knowledge can be used, and where are the gaps of knowledge

that can be filled. This chapter presented studies about  analogical reasoning,  relational

categories  and  simultaneous  learning  of  categories,  which  are  related  to  our  first

hypothesis,  which says that analogy can be established between simultaneously-learned

categories with similar structures, to aid the learning of both categories. Included are also

studies about structure mapping, mutual alignment, direct comparison of similar items

and relational categories learning models, which are related to hypothesis 2a, which says

that categories are continuously compared and mutually aligned using structure mapping.

Studies  about  the modification of concepts,  the "theory  theory",  implicit  learning and

some other machine learning models (such as the Inductive logic programming) were also

presented, which are related to hypothesis 2b, which says that learning consists of two

phases  where  partial  categories  are  first  formed  and  then  refined  to  create  the  final

categories. 

From this review, it is clear that the case of the simultaneous learning of categories with

similar  structures  was  never  explicitly  studied  before.  This  thesis  will  address  what

happens in such a case,  and to do so will  use the knowledge drawn from the studies

presented in this chapter.
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Chapter 3

Experiment 1

3.1. Introduction

Given the breadth of the field investigated, this first experiment verifies only some of the

predictions made in the second chapter. The focus for this experiment was mainly on the

invention of a paradigm with novel similar relational categories, and the simultaneous

presentation of similar exemplars.

The hypotheses tested in this experiment are those already stated in the previous chapters:

1. Analogy  can  be  established  between  simultaneously-learned  categories  with

similar structures, to aid the learning of both categories. For example, a category

defined by an equal number of elements of the same kind is structurally similar to

a category defined by a numerical ratio between elements of the same kind, and

analogy can be established between both categories when simultaneously learned;

2a. Categories  are  first  learned  and  then  compared  and  mutually  aligned  using

structure mapping; or

2b. Learning consists  of  two phases where one or more partial  categories are first

formed and then refined, so from each partial category stem some final categories. 
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This experiment tests only a subset of the predictions of my hypotheses. The predictions

tested in this experiment are:

1. according to hypothesis 1, learning of similar categories is related, that is, time

between learning of similar categories is less than time between learning of

dissimilar ones.  For  example,  the  time  elapsed  between  the  learning  of  two

categories  both  defined  by  a  numerical  relation  (e.  g.  equal  number  and  1:2)

between elements  of  the same kind is  less  than the time elapsed between the

learning of  one category defined by a  numerical  relation and another category

defined by the presence of a distinctive element,

2. according  to  hypothesis  2a,  the  simultaneous  presentation  of  exemplars  from

similar categories should facilitate learning,

3. according  to  hypothesis  2b,  before learning is complete, any errors in

categorisation are not random but they are more frequent across similar categories

(e.  g.,  errors  across  two  categories  defined  by  a  numerical  relation  between

elements  of  the  same kind  are  more  frequent  than errors  across  one  category

defined by a numerical relation and another category defined by the presence of a

distinctive element),

4. according  to  hypothesis  1,  relational similarity (e.  g.,  based  on  the  numerical

relation between elements) helps learning, in respect to categories defined simply

by features (for instance, defined by the presence of a distinctive element).

The design of the experiment will follow the need to test all these predictions. 
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In order to test the first prediction  (learning  of  similar  categories  is  related), the

experiment must compare how long it takes to learn each category. The null hypothesis is

that the learning of each category is independent. 

To test the second  prediction, there must be some way in which we can compare how

difficult the participants found it to learn simultaneously-presented similar categories

compared to simultaneously-presented dissimilar categories. The null hypothesis is that it

is equally difficult. 

To test the third prediction, the pattern of answers and errors before learning is considered

to  have  occurred,  must  be  recorded  and  analysed.  The  null  hypothesis  is  that  those

answers are randomly distributed. 

Finally, to test the last prediction, an analysis of which category is learned first must be

performed. The null hypothesis is that there is no difference between the number of times

each category is learned first.

In order to perform all these analyses, various constraints were considered which served to

guide me in the design of the experiment. The following subsections illustrate these

constraints and the solutions proposed. The resulting experiment is then described in the

"Method" section.

3.1.1. No previous knowledge

Analogical reasoning has been extensively studied in its function of transferring

knowledge from a well known domain to a less known one. The focus in this experiment
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is instead on its use during the learning of completely unknown concepts. Therefore any

domain in which previous knowledge is used (like for example the comparison or

completion of words, stories, pictures or situations) must be excluded. Otherwise it can

always be argued that analogical reasoning occurs because one concept was already

(better) known initially, laying the foundation for a standard analogical transfer of

knowledge.

Obviously it is impossible to invent a completely unknown domain, since the stimuli must

be understandable in some way. Yet it is possible to define artificial categories which are

rarely (if never) seen in everyday life. What is most important is to include enough

complexity to be able to define categories based on relations.

The solution found is to use categories of a graphical abstract nature. So, I have designed

exemplars containing a number of coloured shapes of different types (circles, squares,

triangles, crosses, stars) and colours (blue, red, yellow, green and pink). In this way I can

build my own categories, ensuring that all participants have no prior knowledge of any of

the categories.

3.1.2. Definition by similar relations

In many Category Learning tests the categories are defined by the presence of one or more

features. In those cases it is difficult to determine if Analogical Reasoning can have a role,

even if categories have similarities between them. Therefore there is need of categories

defined by relations (e. g., categories defined by a numerical relation between elements of

the same kind), a concept already proposed by Gentner and Kurtz (2005).
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In order to create a case in which similarities can be detected only using Analogical

Reasoning, in this experiment the analogical categories must be defined by relations

between features. This means that in different exemplars of the same category the features

change, but the relation between them is always the same within the category: e. g., the

relation between the exemplars is an equal number of elements of the same kind, with the

same shape but different colour (so, within a category we shall have 2 red circles and 2

green circles in an exemplar, 3 red circles and 3 green circles in another one, and so on).

Those relations must then be similar between (at least) two categories, so Analogical

Reasoning can clearly be used. 

Moreover, in order to avoid an early "gestalt" processing of the information, graphical

relations (such as "left-right", "inside-outside", etc.) must not be used. To be sure that

Analogical Reasoning, and not other abilities, is used to detect similarities, only relations

that involve higher logical reasoning can be used.

3.1.3. Simultaneous presentation

A factor that can facilitate or hinder learning is the simultaneous presentation of

exemplars. It has already been shown (Kurtz & Gentner, 1998; Kurtz & Boukrina, 2004;

Kurtz & Loewenstein, 2007; Kurtz et al., 2001) that the simultaneous presentation of

exemplars of the same category can facilitate learning. If Analogical Reasoning is

involved in the learning of similar categories, according to the structure mapping theory

also the simultaneous presentation of exemplars of similar categories should facilitate

learning.
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In fact the direct comparison between the two (or more) exemplars should help finding the

alignable and non-alignable differences (Gentner & Markman, 1994; Markman &

Gentner, 1993, 1996) using the structure mapping.

In order to test if the simultaneous presentation of similar (or dissimilar) exemplars helps

learning, two groups of participants are needed. One group is presented more often with

paired exemplars of similar categories, another group is instead presented more often with

paired exemplars of dissimilar categories. This introduces also the need of two distinct

kinds of categories: a first kind with similar structures, and a second kind with structures

dissimilar from the first kind (i.e.  relational categories, defined by a numerical relation

between elements of the same kind versus features categories, defined by the presence of a

distinctive element).

Finally, a third group of participants is needed, which is presented with only one exemplar

at a time, in random order. This third group is introduced to check if the presentation of

two exemplars at a time makes the test more difficult. It can be argued that the task is

different if one or two exemplars are presented each time, and it is exactly this problem

that is tested. Is the task easier or more difficult, if two exemplars are presented, given that

in other experiments only one exemplar at each time is presented? The null hypothesis is

that  the  difficulty  does  not  change  between  the  single  presentation  of  exemplars,  the

simultaneous  presentation  of  similar  exemplars,  and  the  simultaneous  presentation  of

dissimilar  exemplars.  If  this  is  the  case,  it  can  be  inferred  that  exemplars  are  not

continuously compared and mutually aligned.
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In other terms, we know that people normally see only one exemplar at a time. We want to

know what happens if they are shown instead two exemplars simultaneously. In particular,

the case in which they are shown two exemplars simultaneously may fall into one of two

sub-cases: they are shown two  similar exemplars simultaneously or they are shown two

dissimilar exemplars simultaneously. Therefore, the hypothesis to test in general is:

The  simultaneous  presentation  of  the  exemplars  does  not  change  anything  in

respect to the presentation of only one exemplar at a time.

But here it is necessary to make a distinction: in fact, as noted above, the simultaneous

presentation can be of similar exemplars or of dissimilar ones. So that hypothesis should

be split into three hypotheses:

1) The simultaneous presentation of  similar exemplars does not change anything in

respect to the presentation of only one exemplar at a time;

2. The simultaneous presentation of  dissimilar exemplars does not change anything

in respect to the presentation of only one exemplar at a time;

3. The simultaneous presentation of similar exemplars does not change anything in

respect to the simultaneous presentation of dissimilar exemplars.

3.1.4. Relations vs. Features

Another way to assess if structural, relational similarities can give an advantage over the

definition by simple features, is to have one kind of categories defined by similar relations,
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and another kind of categories defined just by features. For example, a category defined by

a numerical relation between elements of the same kind is a relational category, while a

category defined by the presence of a distinctive element is a  features category. If the

relational categories are found before the features ones, it would mean that Analogical

Reasoning provides enough help to learning that it not only overcomes the additional

complexity of the relational categories, but it allows the exploitation of their similarities to

make their learning easier.

It can be argued that all the categories defined by features can also be defined by relations,

although simple ones ("is", "has", "is present", etc.). Therefore there would be no

difference between the two kinds of categories, because Analogical Reasoning would be

used also for the features categories to exploit their similar structures. Nevertheless, this

argument only strengthens the theory that Analogical Reasoning is widely used, and does

not change the validity of other constraints and the other results.

It has also been proposed (Goswami, personal communication) that, given the complexity

of the task, people will assume that the categories are defined by complex rules, and

ignore simple ones. This would make the discovery of the simple rules at least as difficult

as the discovery of the complex ones.

Therefore, a null result wouldn't be particularly informative. Yet, given that the

experiment allows for such an analysis, it is worth to mention it and to perform this

analysis too.
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3.2. Method

3.2.1. Participants

The actual experiment was preceded by a preliminary test on 20 volunteers from outside

the university, to check if it was solvable and to assess the expected effect sizes for each

test and thus the needed number of participants. Based on the estimated effect sizes, the

total number of participants was estimated as 30.

Participants were 30 volunteers from the School of Computer Science and Informatics of

the University College Dublin: 20 Males and 10 Females, average age 26.2. They were

randomly assigned to the three groups (Paired, Unpaired and Single - see below), 10 for

each group, and rewarded with a small sum of money.

3.2.2. Materials

The experiment was carried out on normal personal computers in a controlled

environment. The test was developed in Flash and was presented in full-screen mode. 

According to the group (see below) the participant was randomly assigned to, the screen

presented one or two exemplars each time, one on the left and the other on the right, or

just one centred. Below each exemplar there were four buttons, labelled "A", "B", "C",

"D". The participant had to click on one of the buttons (for each exemplar) to tell which

category (A, B, C or D) they thought the exemplar was.
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On the far right of the screen there was a text area labelled "Notepad", in which the

participant could write a limited amount of text (500 characters). The entered text, each

time the shown exemplars changed, was recorded on a server, in order to provide insight

into the learning processes.

Another function of the notepad, given that the task involves much reasoning and is

therefore memory-consuming, is to help people to write down ideas. It is worth to

remember that this test is only about what kind of reasoning people use, and it was known

since the beginning that the tasks would be difficult and memory-consuming.

The exemplars of the four categories looked like grey circles on a white background.

Inside the circles there was a number of coloured shapes (in order to avoid spatial hints,

the shapes were arranged in random order). The number of the coloured shapes in each

exemplar could vary from 1 to 12. The shapes could be of 5 different types (circles,

squares, triangles, crosses and stars) and 5 different colours (blue, red, yellow, green and

pink). Consequently, there were 25 different kinds of elements in total. Each exemplar

contained from 1 to 3 different kinds of elements.

Each category was defined by a different rule, and the exemplars were randomly generated

by the computer according to those rules.  3.1 summarizes  the  kinds  of  classification

criteria used in this experiment.

Table 3.1 Simplified examples of the classification criteria.

Category Criterion

Relational 1 ("A") Contains the same quantity of red circles and green circles. E.g. 2 red
circles and 2 green circles, 3 green circles and 3 red circles, etc.

Relational 2 ("B") Contains twice the quantity of red circles and green circles (or the 
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opposite). E.g. 2 red circles and 4 green circles, 3 green circles and 6 
red circles, etc.

Feature 1 
("C")

Contains a pink square.

Feature 2
("D")

Contains a blue square.

Rules for categories A and B (Relational categories, in the analysis referred to as R1 and

R2) were based on the numeric relation between two kinds of elements inside the

exemplar, that had the same shape but different colour (for each test, the shape and the 2

colours were chosen randomly right at the beginning and remained fixed throughout the

test). 

In category A (Figure 3.1), the number of elements with the given shape had to be the

same for the two different colours. For instance, an exemplar of category A could be

defined by 2 red circles and 2 green circles (or 3 red circles and 3 green circles, and so

on). 

In category B (Figure 3.1), the number of elements with the given shape had to be twice

the number for one colour than it was for the other. For instance, an exemplar of category

B could be defined by 2 red circles and 4 green circles, or just the opposite (or 3 red

circles and 6 green circles, or the opposite, and so on). The remaining elements were

randomly added and had no role: they were just distractors. 
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Figure 3.1 Two exemplars are simultaneously shown, one of category A (left), the other of category B
(right). In this particular test the categories A and B were defined as same/twice number of red and
yellow stars. The other shapes are distractors.

Rules for categories C and D (Features categories, in the analysis referred to as F1 and F2)

were instead based on the presence of a single distinctive element, of the same shape but

different colours for the two categories (Figure  3.2). The remaining elements were

randomly added and were just distractors. Obviously, for each test the shape and the 2

colours were chosen randomly at the beginning and remained the same throughout the

test. For example, category C could be defined by the presence of a pink square, while

category D by a blue square. 

Figure 3.2 Two exemplars are simultaneously shown, one of category C (left), the other of category D
(right). In this particular test the category C was defined by the presence of a blue cross, the category
D by the presence of a green cross. The other shapes are distractors.
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The exemplars were randomly generated by the program, according to the above

mentioned rules. In general, each exemplar could contain up to a maximum of 11

“distractor”  elements. These distractors contained no category-membership information

and were randomly chosen. This design ensured that it was impossible for participants to

guess the correct answer by exclusion; instead all the four categories had to be correctly

identified.

3.2.3. Design

The participants were divided into three groups: one paired group, one unpaired group,

and one single group. The paired group (Figure 3.3) saw two exemplars simultaneously on

a computer screen, one on the left and one on the right: 5 times out of 6 the two

exemplars shown on the screen belonged to similar categories (for instance, A and B, or D

and C, or B and B); once out of 6, instead, the two exemplars shown were of dissimilar

categories (for instance, A and C, or D and B). The unpaired group (Figure 3.4) also saw

two exemplars simultaneously on each screen, but only 2 times out of 6 the two exemplars

shown belonged to similar categories (A and B, C and D, and so on); more often, i.e. 4

times out of 6, the unpaired group saw two exemplars of dissimilar categories (A and C,

and so on). Of  all  the  possible  ratios  between  exemplars  of  similar  categories  and

exemplars of dissimilar categories, this choice of presentation (the two exemplars shown

belonged to similar categories 5 times out of 6 for the paired group and 2 times out of 6

for the  unpaired group) was the most arithmetically balanced, although it didn't present

only pairings of the same kind, which in any case is not ecologically plausible. With other

ratios it would have been impossible to properly balance the different categories in all the
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possible pairings and, however, it would not have been ecologically plausible. Finally, the

single group (Figure 3.5) saw only one exemplar on each screen, shown in random order in

the centre of the computer screen.

Figure 3.3 Two exemplars are simultaneously shown, of similar categories: one of category C (left),
the other of category D (right). They are similar because both present a distinctive element, which is
a blue cross for the exemplar on the left and a green cross for the exemplar on the right. This kind of
screen is presented more often to participants of the paired group.

Figure  3.4 Two exemplars are simultaneously shown, of dissimilar categories: one of category B
(left), the other of category D (right). They are dissimilar because the one on the left presents a
numerical relation (1:2) between elements of the same kind but different colour (there are two red
stars and four yellow stars) while the one on the right presents a distinctive element, which is a green
cross. This kind of screen is presented more often to participants of the unpaired group.
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Figure 3.5 Only one figure is shown. This kind of screen is presented to participants of the single
group.

The presentation order of the pairs was random, but balanced in cycles of 24 exemplars,

so every 12 screens (or 24 in the single group) participants were shown 6 exemplars for

each category.
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Table 3.2 Possible sequences of screens for the paired, unpaired and single group.

Paired:
1. A B
2. B A
3. C D
4. D A
5. A B
6. D C
7. C C
8. A D
9. B B
10. D C
11. C D
12. A B

Unpaired:
1. A B
2. D B
3. C A
4. B C
5. A A
6. D B
7. C C
8. B D
9. C D
10. D A
11. A D
12. C B

Single:
1. A 
2. B 
3. C 
4. D 
5. D 
6. A 
7. A 
8. B 
9. B 
10. B 
11. D 
12. C 
13. D 
14. C 
15. C 
16. C 
17. B 
18. A 
19. C 
20. D 
21. A 
22. D 
23. A 
24. B

3.2 gives some examples of possible sequences of screens for a participant of the paired,

unpaired and single group.

The aim of this division into groups was to test if the simultaneous presentation of

exemplars of similar categories helps learning. To test this prediction, the performance of

the participants had to be compared across the three groups. The number of exemplars

and the amount of time needed to finish the test were the crucial factors to evaluate and

compare the performances. Furthermore, all the answers given during the test were

recorded, in order to analyze all the mistakes made as well as the order in the process of
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category learning. As already said, the content of the notepad and the answers to the

debriefing questions were recorded, too, in order to have a better insight in the reasoning

process.

3.2.4. Procedure

1. After reading a screen with the instructions, the participant clicks a button to start the

test. 

2. For each screen the participant has to choose an answer clicking on one of four buttons

(“A”, “B”, “C”  or “D”) shown below the exemplar(s) presented: this will answer the

question “which category is this exemplar?” 

3. The chosen button becomes yellow and a button labelled “Ok” appears below (Figure

3.6). In the case of the paired and unpaired groups, the “Ok”  button will appear only

when both of the questions presented in the screen are answered. The participant has to

click on “Ok” in order to confirm the answer(s). Before clicking on the "Ok" button, the

participant can change the answers an unlimited number of times. 

4. After clicking on the "Ok" button, the “Ok” button disappears, and feedback is given

(Figure 3.7). If the answer is right, the chosen button becomes green, with a "tick" inside.

If the answer is wrong, the chosen button becomes red, with a "cross" inside, and the

correct answer becomes green, without any sign. Beside the feedback, a “Next”  button

appears, allowing the participant to pass to the following exemplar(s) (point 2). The test is

therefore self-paced. 
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Figure 3.6 Answers are given for both the shown exemplars, and the "Ok" button has appeared. The
participant can still change the answers, and must confirm them by clicking the "Ok" button.

Figure 3.7 After clicking the "Ok" button feedback is given, and the "Next" button appears. The
exemplar on the right was correctly of the "C" category, while the exemplar on the left was instead
of the "D" category.

Since the exemplars are randomly generated by the program, there isn’t a definite, fixed

number of exemplars for each test, but it can virtually go on ad libitum. Actually the test

ends when in each category the participant reaches an accuracy of 83%, calculated on a

moving average of 12 exemplars per category (that is 10 correct answers). This criterion is

chosen to minimize the probability of passing the test just by chance. The 2 incorrect

answers are allowed in order to take into account some possible distractions at the end of

the test.
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To better understand the learning process, when subjects reach an accuracy of 40% and

60% in each category, and at the end of the test, they are asked if they have found a rule

for any of the categories and, if they have, what those rules are. At the end of the test a

debriefing question asks what method they have used to solve the test. The test is

implemented in Macromedia Flash and all answers are timed with an accuracy of 1

millisecond and are recorded locally and then sent to a server.

3.2.5. A typical test session

A typical test session would work as follows. At the very beginning, the participant had to

give answers randomly, not having any previous knowledge. They could take notes

(although the available space was intentionally limited), and usually they started writing

descriptions of the seen exemplars. Everything the participants wrote on the notepad was

recorded. Although no formal analysis has been conducted, an informal review of the

notes showed that participants just wrote about the colour, shape and number of elements,

ignoring the spatial disposition, which must have already been eliminated as a source of

information for categorisation.

After a while, the participant would notice some patterns, and would start to formulate

hypotheses about the classification criteria. This could also be seen from reading the

notepad recordings. After a while, the participants started to write some kind of rules

instead of just descriptions of exemplars. This formulation of rules has also been clearly

stated by some participants in their debriefings.
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During this particular stage, the answers the participant would give were sometimes

correct and sometimes wrong, but they were no longer random, instead they followed their

hypothesized rules. It is therefore interesting to analyse the errors made during this period,

in order to better understand the type of confusion encountered.

At some point, the participant started to give systematically the right answer to some

category, and that is the point we call "learning point" for that category (see below for the

algorithm).

The learning processes for the different categories can be unrelated (null hypothesis) or

related. In particular, learning of the two relational categories can be related (learning one

can help learning the other), as well as learning of the two features categories (since they

also are similar to each other). In contrast learning of the two distinct groups of categories

(i.e. features vs. relations) is expected to be unrelated.

When the participant reached our learning criterion for each category, the test ended. At

this stage all four learning points are defined, and it is possible to look at their order and at

the intervals between them, to determine if learning of a category is related or not to

learning of the other ones.

3.2.6. Estimation of learning points

Since many of the results are based on the estimation of learning points, it can be useful to

briefly present the algorithm used for their estimation (Figure 3.8). 
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Learning points are estimated independently for each category, using a moving average of

the correct answers to the shown exemplars of that category. As said above, participants

are considered to have learned a category when they reach an accuracy of 83%, calculated

on a moving average of 12 exemplars per category (that is 10 correct answers). The

learning point for a category is therefore the first correct answer after which the

participant only makes two mistakes in the next 11 answers (for that category).
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for each answer for the given category, starting from the end {
calculate a moving sum of length 12 of the correct answers for the
given category;
when the moving sum > 10 {

go backward until it is < 10 {
the answer immediately following is the learning
point;

}
} 

}

Figure 3.8: Algorithm for the estimation of learning points. Green circles are correct answers, red
circles wrong answers. The example represents learning of Category R1.
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3.3. Results

3.3.1. Simultaneous presentation factor

To test the prediction that the simultaneous presentation of similar exemplars helps

learning, the performance of the participants has to be compared across the three groups.

This prediction is related to the hypothesis 2a, that categories are continuously compared

and mutually aligned using structure mapping.

When all the categories reached the learning criterion, the test ended. Time and number

of exemplars elapsed until that point can both be measures of the difficulty to finish the

test. Both were analysed and compared across the groups. No significant difference was

found (see Figure 3.9, Table 3.3 and Table 3.4). 

Both time and number of shown exemplars were analysed  and compared across the

groups. No significant difference was found (Time: F(2,27)=.41, p>.60; Shown exemplars:

F(2,27)=.48, p>.60; see Figure 3.9, Table 3.3 and Table 3.4).

Table 3.3 Descriptive statistics for number of shown exemplars to end

Group Mean Std. Deviation N
Paired 138.8 92.87 10

Unpaired 193.8 235.41 10

Single 133.2 74.76 10

Total 155.27 149.61 30
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Table 3.4 Descriptive statistics for time to end

Group Mean Std. Deviation N
Paired 22.99 14.45 10

Unpaired 28.72 17.52 10

Single 25.79 8.56 10

Total 25.83 14.13 30
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Figure 3.9 Time and number of exemplars required to finish the test

Although the trends seem to favour the hypothesis that direct comparison can help

learning (the paired group needs less time and exemplars than the unpaired group), the

size of this effect is very small. Therefore direct comparison is not a strong factor to help

the learning of similar categories, and it does not even differentiate the performance

compared to the single group. 

Nevertheless, as the following analyses will show, learning of similar categories is related,

thus some kind of analogy is used during the test. Given that the direct comparison is not
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the crucial factor,  hypothesis  2a  (categories  are  first  learned  and  then  compared  and

mutually aligned using structure mapping) should be discarded if the prediction based on

hypothesis 2b (learning consists of two phases where partial categories are first formed

and then refined to create the final categories) is confirmed.

3.3.2. Learning intervals

A trivial way to test the prediction that learning of similar categories is related would be

looking at the order in which different categories were learned. But to do so would mean

to discard a lot of useful information, and could result in misclassification in some cases.

Take, for example, the cases shown in Figure 3.10. They have the same order of learning,

but clearly in the first case the two relational categories (R1 and R2) are as related (or

unrelated) as the two features ones (F1 and F2). In fact, the distance, in time, between the

learning of R1 and R2 is the same than the distance between F1 and F2. In the second case,

in contrast, the two relational categories are much more related than the other two,

although the learning order is the same. From the figure it is clear that the distance, in

time, between the learning of R1 and R2 is  less than the distance between F1 and F2.

Because of the brief time elapsed between the learning of R1 and R2, the two events can

be considered related.
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Figure 3.10 Points of learning in time, equivalent for order, but different for intervals

A computation of the average time needed to learn each category is also useless, for two

reasons. The first reason is that it is not important if category R1 is learned before or after

R2 (or F1 before or after F2), because the attention is on which kind of category is

learned first. The second and most important reason is that time and number of exemplars

needed to finish the test vary a lot between participants, and therefore also the time and

number of exemplars elapsed before the learning of each category. Thus, another analysis

of learning points must be used,  to  compare  learning  points  independently  for  each

participant. 

As a first step, for  each  participant,  all the intervals between the learning points are

calculated (i.e. R1R2, R1F1, R2F1, etc.), in terms of number of exemplars shown until the

points of learning. For  example,  the  interval  R1R2   is  computed  as  the  number  of

exemplars elapsed between the learning of R1 and R2 (for each participant).

The important relation is of the learning points of R1 and R2, on one hand, and of the

points of F1 and F2 on the other hand. Those two  intervals are therefore of particular

interest, and are compared to see which pair is more related.

In a second step,  for each participant the average of all the intervals between all the

categories (AllIntAvg) is computed:
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AllIntAvg=
R1R 2+ F 1F 2+ R1F 1+ R 2F 1+ R1F 2+ R2F 2

6 (3.1)

It is  used as a baseline for comparison, for each participant. In fact, if the four learning

points are all independent from each other, a randomly chosen learning interval (e.g.

R1R2) should be approximately equal to this average.

If, for a participant, the number of exemplars elapsed between the learning of R1 and R2

(and/or the learning of F1 and F2) is less than what randomly expected (i.e. AllIntAvg), it

can be inferred that learning of similar categories is related.

In a third step, it is counted for how many participants AllIntAvg >  R1R2, for how many

AllIntAvg <  R1R2, AllIntAvg > F1F2, etc. 

A  preliminary MonteCarlo was performed to compute the expected number of times 

AllIntAvg >  R1R2 (or  F1F2). This simulation showed that this comparison is positive

roughly 50% of times and negative the remaining 50%, and that the distribution is not

normal (Appendix C). Therefore it was not possible to use the t-test or other parametric

tests, and a binomial test has been performed. 

Although the group factor should have no effect on how much learning of similar

categories is related, a preliminary analysis was done on each group separately. Given the

small size of the groups, no statistically significant result was expected, but the trends can

always be studied. As shown in the Table 3.5,  3.6 and  3.7, for each group the interval

between relational  categories (R1R2) is less than the average of all the intervals
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(AllIntAvg)  and  the interval between features  categories (F1F2) is also  less than the

average of all the intervals (AllIntAvg). Given that there are no differences between the

groups, a joint analysis was performed.

In the joint analysis the  interval  between  relational  categories  (R1R2)  is  less  than  the

average of all the intervals (AllIntAvg) in 87% of the cases (much more than the expected

50%, binomial test p < 0.001, see Table 3.5,  3.6 and  3.7), meaning that the relational

categories are more related to each other than expected. Also the interval between features

categories (F1F2) is less than the average of all the intervals (AllIntAvg), in 82% of the

cases (much more than the expected 50%, binomial test p < 0.001, see Table 3.5, 3.6 and

3.7),  meaning  that  also  the  features  categories  are  more  related  to  each  other  than

expected. 

These results support the prediction that learning of similar categories is related, and thus

the hypothesis that analogy can be used early in learning, between simultaneously learned

categories. But given the small effect size of the simultaneous presentation factor (see

previous  section), it is plausible that some process other than structure mapping is

involved when learning novel similar categories. This will be further discussed below and

in detail in the model chapter.
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Table 3.5 Frequencies of the comparisons of the interval between relational categories (R1R2) Vs the
average of all the intervals (AllIntAvg) and significance of the binomial tests.

Group AllIntAvg >  R1R2 AllIntAvg <  R1R2 AllIntAvg =  R1R2 N Proportion P

Paired 9 1 10 .9 .021

Single 8 2 10 .8 .109

Unpaired 9 1 10 .9 .021

Total 26 4 30 .87 .001

Table 3.6 Frequencies of the comparisons of the interval between features categories (F1F2) Vs the
average of all the intervals (AllIntAvg) and significance of the binomial tests.

Group AllIntAvg >  F1F2 AllIntAvg <  F1F2 AllIntAvg = F1F2 N Proportion P

Paired 9 1 10 .9 .021

Single 8 1 1 10 .89 .039

Unpaired 6 3 1 10 .67 .508

Total 23 5 2 30 .82 .001

Table 3.7 Frequencies of the comparisons of the interval between features categories (F1F2) Vs the
interval between relational categories (R1R2) and significance of the binomial tests.

Group F1F2  > R1R2 F1F2  < R1R2 F1F2  = R1R2 N Proportion P

Paired 5 2 3 10 .71 .453

Single 2 8 10 .2 .109

Unpaired 6 3 1 10 .67 .508

Total 13 13 4 30 .5 1

3.3.3. Analysis of Errors

From the hypothesis 2b, that learning consists of two phases where partial categories are

first formed and then refined to create the final categories, stems the prediction that before

learning  is  complete,  any  errors  in  categorisation  are  not  random but  they  are  more

frequent across similar categories. In other terms, it is more probable to say that a R1

exemplars belongs to the R2 category, than it belongs to F1 or F2. 
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Therefore, the incorrect answers given by a participant before learning of any category has

occurred can be a good indicator of how the learning process happens for that participant.

In particular, my interest is whether they are randomly distributed, or if the mistakes (one

could say the "confusion") follow particular patterns. 

This analysis must be performed on the answers given before any category has been

learned, therefore the final point of the data to be analysed is the learning point (see above

for the estimation) of the first learned category. Clearly, for each participant the number

of answers until that point is different. 

It would therefore be pointless to consider the first (or the last, or the middle) n answers,

since they would be for each participant a different fraction of the given answers. Yet

some criterion must be defined to classify the answers in order to analyse the progression

of learning. In fact the first answers are expected to be random, while the last answers are

very near the correct identification of the first classification criterion. But how many are

the "first answers" and how many the "last answers"? Given that every criterion would be

arbitrary, the one that seemed most sensible was chosen. The data to be analysed (i.e. the

answers from the beginning until the first learning point) was divided into three equal

intervals.

Given the value 1 to the first learning point, and the value 0 to the start of the experiment,

three intervals have been considered: from 0 to 0.333 (interval 1), from 0.333 to 0.666

(interval 2) and from 0.666 to 1 (interval 3). They represent three possible stages of

learning: initial, intermediate and almost complete.
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For each of these intervals a contingency table has been collated, of the given answers vs.

the correct answers. Four regions can be marked on this contingency table. On the

diagonal are the correct answers. The remaining incorrect answers can be further divided

into three regions: the mistakes classifying an exemplar in the other relational category,

the mistakes classifying an exemplar in the other features category, and the completely

incorrect answers (see Figure 3.11).

The mistakes across relational categories and across features categories are of particular

interest, because they represent cases of partial learning. Given that the analysis is

performed before complete learning has occurred, if mistakes across similar categories

are more than randomly expected, it can be an indication that a partial draft of a common

classification criterion was already learned.

Figure 3.11 The contingency table of Given VS Expected number of answers. Four regions can be
marked: the correct answers, the mistakes classifying an exemplar in the other relational category,
the mistakes classifying an exemplar in the other features category, and the completely incorrect
answers.

For each of these regions the random expected values have been also computed using the

marginal means (as in the Chi Square method), and then the given and expected values has

been compared for each region for each interval.
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Although the group factor should have no effect on the distribution of errors, a

preliminary analysis was done on each group separately. Given the small size of the

groups, no statistically significant result was expected, but the trends can always be studied

and compared.

Table  3.8 Frequencies and statistics of the sign comparisons of given VS expected number of
mistakes classifying an exemplar in the other relational category, for each interval, for each group.
In bold the significant results.

Count Other Relational Category Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 Paired 2 5 3 1
Unpaired 2 5 3 1
Single 2 5 3 1

1 Total 6 15 9 .607
2 Paired 0 4 6 .031

Unpaired 0 3 7 .016
Single 1 4 5 .219

2 Total 1 11 18 .001
3 Paired 2 3 5 .453

Unpaired 3 3 4 1
Single 1 4 5 .219

3 Total 6 10 14 .115

Table  3.9 Frequencies and statistics of the sign comparisons of given VS expected number of
mistakes classifying an exemplar in the other features category, for each interval, for each group. In
bold the significant results.

Count Other Features Category Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 Paired 2 7 1 1
Unpaired 2 6 2 1
Single 2 7 1 1

1 Total 6 20 4 .754
2 Paired 1 4 5 .219

Unpaired 1 6 3 .625
Single 1 2 7 .070

2 Total 3 12 15 .008
3 Paired 0 6 4 .125

Unpaired 1 7 2 1
Single 1 3 6 .125

3 Total 2 16 12 .013
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Table  3.10 Frequencies and statistics of the sign comparisons of given VS expected number of
completely incorrect answers, for each interval, for each group. In bold the significant results.

Count Completely Incorrect Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 Paired 1 5 4 .375
Unpaired 1 5 4 .375
Single 1 5 4 .375

1 Total 3 15 12 .035
2 Paired 3 3 4 1

Unpaired 2 6 2 1
Single 3 1 6 .508

2 Total 8 10 12 .503
3 Paired 3 6 1 .625

Unpaired 3 6 1 .625
Single 4 2 4 1

3 Total 10 14 6 .454

Table  3.11 Frequencies and statistics of the sign comparisons of given VS expected number of
correct answers, for each interval, for each group.

Count Correct Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 Paired 1 5 4 .375
Unpaired 0 7 3 .250
Single 1 5 4 .375

1 Total 2 17 11 .022
2 Paired 4 1 5 1

Unpaired 3 4 3 1
Single 2 4 4 .687

2 Total 9 9 12 .664
3 Paired 2 3 5 .453

Unpaired 2 4 4 .687
Single 3 2 5 .727

3 Total 7 9 14 .189

As shown in the  3.8,  3.9,  3.10 and  3.11, the comparisons between given and expected

number of answers are similar for each group. Because the size of each group was too

small to give significant results separately, and there was no reason to keep them separate,

a joint analysis was performed (the results are the totals in the tables).
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Figure 3.12 Sums of the sign comparisons of given VS expected number of answers for each region
of the contingency table, for each interval, joint analysis.

Sum = count (given > expected) - count (given < expected)

As shown by 3.8,  3.9,  3.10,  3.11 and Figure  3.12, the sign tests between given and

expected number of answers give these results:

• In the first interval (0 - 0.333) both the completely wrong answers and the correct

answers occurred  more  often  than  expected.  This  is  an  unexpected  and

unexplainable result. The number of given answers in the remaining regions of the

contingency table (Figure 3.11) are not statistically different from what randomly

expected.

• In the second interval (0.333 - 0.666) the incorrect relational answers occurred

more often than expected and so did the incorrect features answers. Both the

completely wrong answers and the correct answers are not different from what

randomly expected.
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• In the third interval (0.666 - 1) only the incorrect features answers occurred more

often than expected.

The pattern that emerges is of particular interest, depicting learning dynamics that have a

middle period of "partial learning" for both the relational and features categories. In fact,

the mistakes across similar categories occur more frequently than would be expected if

these mistakes were random, while the mistakes across dissimilar categories (i.e. between

different kinds of categories) are not different from what would be expected if these errors

were random. 

This result supports the prediction that before learning is complete,  any  errors  in

categorisation are not random but they are more frequent across similar categories. In

turn, this supports  the hypothesis 2b,  that learning consists of two phases where partial

categories are first formed and then refined to create the final categories.

Of course,  structure mapping could provide an alternative explanation for the fact that

mistakes across similar categories occur more frequently than expected if these mistakes

were random, while mistakes across dissimilar categories (i.e. between different kinds of

categories) are not different from what expected if these errors were random. Although it

is  possible  that  simultaneously  learned  categories  are  aligned  and  compared  using

structure mapping,  we saw that  direct  comparison was not a strong factor to help the

learning of similar categories, because the paired group didn't need significantly less time

and exemplars than the unpaired group, and it did not even differentiate the performance

compared  to  the  single  group.  Therefore,  the  small  effect  size  of  the  simultaneous
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presentation  factor  reduces  the  likelihood  of  the  hypothesis  that  categories  are

continuously compared and mutually aligned using structure mapping.

According  to  these  results,  it  is  more  likely  that  a partial "draft" of a common

classification criterion is first found and then refined to produce the final classification

criteria. The learning process would therefore be a continuum of subsequent refinements

and adjustments, from some very rough drafts, to a better defined one (able to discern

between one kind of category and the other kind) to the final criteria. As will be explained

in detail in the model chapter (Chapter 6), from this continuous process of refinement and

modification could emerge a form of analogical reasoning different from structure

mapping.

3.3.4. Learning order

To test if learning of the relational categories was simpler or more difficult than learning

of the features categories, a simple method was used. For each participant, the kind of the

first learned category was recorded.

Of the 30 participants in the actual test, 14 learned first a features category, 16 a relational

category; no significant difference was found. Also a Chi Square analysis of category kind

vs. group wasn't significant (χ2 (2) = 2.079, p > 0.05).

As proposed above, there are various possible explanation for this null result. For

example, the features categories could also be learned based on a predicate. Or the

complexity of the task could make the participants assume that the categories are defined
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by complex rules. Or that for the relational categories, the advantage given by the

similarities compensates the disadvantage of the more complex criteria to be found.

3.3.5. Participants' debriefings

A last but not less important source of information are the debriefings written by the

participants after solving the test. They were asked which method they used to solve the

task, and many of them indicated the following aspects2:

• Using rules (27 participants)

• Testing and rejecting hypotheses (23 participants)

• Writing previous exemplars on notepad (18 participants) 

• Writing hypothesized rules on notepad (7 participants)

• Once a criterion was found, look for similar criteria (5 participants)

Although this is an informal and qualitative analysis, some important knowledge can be

deduced:

2 Some examples of participants' debriefings:
• "First write down colours and shapes, then try to find a rule by looking for similarities. As one rule

was violated incorporate number of shapes as well. Find a common rule and test it."
• "Began by looking for family resemblances, eg. tending to have blue crosses, tending to have purple

circles, etc. Noticed then that one green square perfectly identified a category and began to look for
similar rules."

• "I wrote down attributes of the cases, and tried to find common factors. After I postulated a
hypothesis I was able to test it. I assumed my hypothesis to be correct until proven wrong."

• "Initially counted distinct shapes in each diagram, which yielded clues to groups A and B. After I was
sure of these but could not see a numerical pattern to C and D I started to examine the particular colours
present in the diagrams for each group and noticed the presence of the purple or yellow circle in both."

69



• The type of categorization used in this task is rule-based and not exemplar-based

(or prototype-based). 

• A scientific method of trial and error is used. 

• It was a memory-intensive task, and the notepad was used to remember the

previously seen exemplars.

• The formulation of hypotheses reduces the memory load. In fact, the notepad is

used much more to write previous exemplars than to write rules. A rule is a

compact way to store information, and needs to be written down less than a

quantity of exemplars.

• Very rarely analogical reasoning was consciously and openly used (see point 5,

above), to transfer knowledge between categories. Nevertheless, the other results

show that structural similarities are of help. Therefore analogical reasoning is used

in some way different from the "canonical" structure mapping.

3.4. Summary

Of the four initial questions, only three can be clearly answered by the results of this

experiment.

Two results proved that analogical reasoning is used during learning of novel categories

with similarities between them. In fact, the learning of one category is quickly followed by

the learning of the other similar one, both for the relational and the features categories.
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The fact that they are related means that the two learning processes help each other, or

even that they are in fact just a single process. 

This last hypothesis is further supported by the presence of a middle phase of "partial

learning" of the categories. In this phase the actual categories are not clear yet, but the

mistakes are made more often with the other similar category than with the other two

dissimilar ones. The confusion between similar categories could be explained by the

formation of a partial draft of a common classification criterion. This would allow to

distinguish one kind of categories from the other kind, without knowing the differences

between the individual categories.

If the structure mapping theory could possibly explain these two results, the small effect

size of the group factor (i.e. the direct comparison of exemplars) is on the contrary an

indication that structure mapping is probably used little if not at all. Otherwise the group

that had the opportunity to directly compare exemplars of similar categories should find

easier to solve the test than the other group(s). Therefore an explanation that does not

require structure mapping is preferable, and will be proposed in the model chapter

(Chapter 6).

The presence of relational similarity between two categories did not appear to make their

learning easier nor more difficult than the other two. But as already stated in section 3.1.4,

there are a number of reasons why this could happen. The most important of these being

the fact that the features categories could also be learned based on a predicate. In this

case, they would have relational similarities as well.
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One limitation of the present experiment is that it could have forced people to notice

analogies and use relational similarities. In fact the  participants  were  forced  to  learn

categories with similarities between them; they had no alternative. Therefore they were

strongly influenced to use analogies, even if in normal circumstances they wouldn't have

used them. This "forced choice", needed in the design, could have biased the experiment

in the direction of the use of analogies. In short, we could have discovered the use of

analogies just because it was an "analogical experiment".

For these reasons, another experiment with a different design is required. This new

experiment must give the participants the opportunity whether or not to use analogies.
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Chapter 4

Experiment 2

4.1. Introduction

As in the previous experiment (Chapter 3), this experiment tests  the  hypothesis  that

analogy  can  be  established  between  simultaneously-learned  categories  with  similar

structures, to aid the learning of both categories.

Given that in the previous experiment the direct comparison of items of similar categories

didn't help (nor hinder) learning, and that there were results showing that learning is split

in two phases, this second experiment will not take into account the hypothesis 2a, that

categories  are  first  learned  and  then  compared  and  mutually  aligned  using  structure

mapping,  and will  on the opposite  further  investigate  the hypothesis  2b,  that  learning

consists of two phases where one or more partial categories are first formed and then

refined, so from each partial category stem some final categories. 

From these hypotheses a series of predictions can be made. The predictions tested in this

experiment are:

1. Even if given alternative solutions, people find solutions which have similar

structures rather than different structures. To give an example, let's consider two

categories each defined by two alternative criteria. For each category only one of

the two alternative criteria needs to be discovered in order to solve the test. Of this
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two  criteria,  one  (the  "analogical  criterion")  is  structurally  similar  to  the

“analogical criteria” of the other categories. The other (the "unrelated criterion") is

instead unique to that category. Let's give some instances. All the exemplars of a

category  (“Dual  1”,  defined  by  two  alternative  criteria)  feature  (at  least)  two

groups of elements. When we click on each element of the first group, the same

piece of music (Music 1) is played, while when we click on each element of the

second group, all the elements of the group (included itself) will rotate at the same

time. All the exemplars of another category (“Dual 2”, defined by two alternative

criteria) also feature (at least) two groups of elements. When we click on each

element of the first group, a certain piece of music (Music 2) is played, always the

same, but different from the piece of music featured on category “Dual 1”. When

we click on each  element  of  the second group,  all  the elements  of  the  group

(included itself)  will  jump in  turn.  So  we can  infer  that  the  first  criterion  for

category  “Dual  1”,  defined  from  a  certain  piece  of  music  being  played,  is

structurally similar to the first criterion for category “Dual 2”, defined by a another

piece  of  music  being  played,  although  the  music  is  different  across  the  two

categories. The other two criteria (the rotating at the same time for “Dual 1” and

the jumping in turn for “Dual 2”) are structurally less similar both to each other

and to  the  music  criterion.  In  the  experiment  we need  to  see  which  criterion

(analogical or unrelated) is found for each category. 

2. Learning of similar categories is related. For each dual category, people will find

just one criterion out of the two, which could be the structurally similar criterion

(analogical,  i.  e.  the  piece  of  music)  or  the  structurally  dissimilar  criterion
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(unrelated,  i.  e. the others).  People who find the structurally dissimilar criteria

cannot have any facilitation due to analogy, therefore will not be included in this

analysis. We thus consider only those who find the structurally similar criteria (in

the  previous  example,  music).  For  these  people,  we expect  that  time between

learning of similar categories is less than time between learning of dissimilar ones.

That is, time elapsed between the learning of categories “Dual 1” and “Dual 2” is

less than the time elapsed between, for example, the learning of category “Dual 1”

and a third category defined by a single “unrelated” criterion, which consists, for

example, in all the elements doing different things, all together.

3. Before  learning  is  complete,  considering  only  people  who find the  structurally

similar criteria (in the previous example, music),  any errors in categorisation are

not random but they are more frequent across similar categories. For example,

errors  across  categories  “Dual  1”  and “Dual  2”  are  more  frequent  than errors

across, for example, category “Dual 1” and the third category (as in the example

given in the previous paragraph).

The first prediction tests if analogy really helps learning, and therefore categorization

criteria with similar structures are found more easily. The third prediction is directly

related to the hypothesis that learning is split in a first phase of partial learning, followed

by a phase of refinement. All of the predictions are based on the hypothesis of the early

use of analogical reasoning. 

In particular, in order to test the first prediction, some categories in the experiment must

be defined by alternative criteria, one of which is similar between some categories. The
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null hypothesis is that people usually find all dissimilar criteria, even when given the

alternative to find similar criteria.

To test the second prediction, the experiment must compare how long it takes to learn

each category. The null hypothesis is that the learning of each category is independent. 

To test the third prediction, the pattern of answers and errors before learning is considered

to have occurred, must be recorded and analysed. The null hypothesis is that those

answers are randomly distributed. 

In order to perform all these analyses, various constraints were considered which served to

guide me in the design of the experiment. The following subsections illustrate these

constraints and the solutions proposed.

4.1.1.  Experience from previous experiment

This experiment is based on the experiences of Experiment 1, and takes into account

some issues discovered in the previous experiment. In particular, I wanted to give the

participants the freedom to use or not to use analogies. In fact, in the previous experiment

the participants were forced to learn categories with similarities between them; they had

no alternative. Therefore they were strongly influenced to use analogies, even if in normal

circumstances they wouldn't have used them. If the categories were defined by two

alternative criterion, one "analogical" and the other not, the participants would have a

choice. It would be interesting, then, to see which criterion they discover.

76



Given the null result from the previous experiment about direct comparison, the

simultaneous presentation factor is abandoned. Since there is no longer any need of a

particular presentation order, in this experiment the presentation of exemplars is just

randomized.

Finally, many participants of the previous experiment reported that after a while they had

problems to concentrate, because it was very boring. Therefore this new experiment

needed to be more entertaining, and possibly to resemble a game.

4.1.2. Alternative solutions

As already stated above, two alternative solutions must be available to the participants.

One solution involves the use of criteria with similarities between them, across different

categories. For instance, given two exemplars of two different categories, when we click

on some elements of the first one, the same piece of music (Music 1) is played, and when

we click on some elements of the second one, another piece of music (Music 2) is played.

The alternative solution, in contrast, has different criteria for each different category. For

instance, given two exemplars of two different categories, clicking on some elements of

the first one will elicit a reaction (the elements rotate at the same time), while clicking on

some elements of the second one will elicit a completely different reaction (the elements

jump in turn). Therefore, some categories (which will be called "dual categories") must be

defined by two alternative criteria, only one of which needs to be discovered in order to

solve the test. Of this two criteria, one, which will be called the "analogical criterion", is

structurally similar to the analogical criteria of the other categories. The other "unrelated

criterion" is instead unique to that category. 
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4.1.3. Entertainment

A number of analogical reasoning experiments use static figures (e.g. Goswami & Brown,

1990a, 1990b; Kokinov, Bliznashki, Kosev, & Hristova, 2007; Lipkens & Hayes, 2009;

Rattermann, Gentner, & DeLoache, 1990; Thibaut, French, & Vezneva, 2008), yet the

limits of such approach are evident, considering both the little ecological plausibility they

have, and the little interest and poor attention they cause in participants.

To overcome these issues, interactivity is introduced, in order to make the test more

entertaining and to make it resemble a game. As a result, it is also more ecologically

plausible and probably easier to solve. It allows also for more complex definitions of

categories and similarities between them. A task with interactive exemplars, in fact,

introduces, among other things, cause and synchronicity relations (for example, when we

click on some elements a piece of music is played, or the elements react with an action all

together, or a tone is played in synchronicity with a movement of the elements), which are

essential in our everyday life.

Also for the sake of entertainment and to be more game-like, a cover story must be used

to explain the task (the full text is available in Appendix D). The story I chose involves a

toy factory that was experimenting a new machine to produce interactive toys. In the cover

story, this machine unfortunately didn't work well. It didn't label the toys, and some of

them had their circuits broken (see below about this last statement). Thus the factory hires

an expert (the participant) to discover how to classify the toys. The participant has to

study the toys by clicking on their composing elements to elicit some reactions, which

provide the key to classifying the toys. In contrast to the previous experiment, in this
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experiment shapes and colours are meaningless. The participant can try different labels

until the correct label is found for each toy. When the participant correctly classifies at

first try enough toys for each kind, the test ends.

4.1.4. Avoid elimination

In order to be sure that all the categories are learned and participants don't answer by

elimination, a last "residual" category must be introduced. This category doesn't have a

definition of its own, since its exemplars will be composed only by distractor elements. It

is exactly this lack of categorization criterion that defines this category, which will be

chosen when all the criteria for the other categories fail. In order to make the task clear

and simple, the name for this category must be exemplary of its definition. The name

"Wrong" is chosen.

4.1.5.  Insight of learning process and learned rules

Having some categories defined by two alternative criteria, the problem arises of how to

discover which criterion is found. Fortunately, having exemplars with interactive elements,

it is possible to record all the interactions (namely: clicks) of the user with the elements. If

some elements pertain to one criterion and some other to the alternative criterion, it is

easy to discern with which criterion the participants are interacting. The "analogical group

of elements" is the set of all the elements of that exemplar pertaining to the "analogical

criterion". In the same way, the "unrelated group of elements" is the set of all the elements

of that exemplar pertaining to the "unrelated criterion".
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Two arrow buttons are provided, to navigate back and forth through the previous

exemplars. This new method provides also the opportunity to see how often the

participants go back to check the previously answered exemplars, and thus how much use

is made of deductive reasoning.

4.2. Method

The experiment described in this chapter is a rather peculiar category learning test: its

peculiarity lies in the fact that during the test the participants are shown the exemplars and

immediately after they are told if their answer is right or wrong, which makes this

experiment different from the usual category learning tests.

4.2.1. Participants

The test was administered to an heterogeneous set of participants. They were both from

inside and outside the university, of various ages and educations, and the test was

performed in different environments with different levels of supervision. All these factors

were recorded and analysed to test for differences in difficulty, but no significant

difference was found. The choice to extend the set of participants was done to be able to

generalize the results, because in the first experiment the participants were only from

Computer Science.

Participants were 28 volunteers randomly chosen: 11 Males and 17 Females, average age

25.7 (SD 9.8). They were randomly assigned to the three groups (U1, U2, U3 - see below),

9 for U1 and U2, 10 for U3.
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4.2.2. Materials

The current experiment was carried out on various personal computers equipped with

headphones, colour screen and mouse. With the exception of a factor described below, the

three groups of participants had the same test. During the test, each participant was shown

4 exemplars per screen. On the left of each screen they could see 5 stacks of draggable

labels (corresponding to the 5 categories) with invented names: Babed, Didom, Golev,

Liset (these names have been invented to be as much equivalent as possible, in terms of

phonetic complexity) and Wrong, which is indeed a non-category, as explained later in

this chapter. Inside each exemplar they could find an area where to stick the labels. In the

screen there was also a timer which showed the time elapsed from the beginning of the

experiment.

Figure 4.1 A screen from a test just started. Four exemplars are shown, with on the left five "stacks"
of labels which can be dragged on the exemplars.

The participants’ task was to learn to correctly classify the exemplars shown: to classify an

exemplar, they had to click on the labels on the left and then drag them onto the exemplar.

Once each label was dropped onto each exemplar, a feedback was immediately given on
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the correctness of the answer. If the answer was wrong, a red cross would appear on the

label; if it was right, a green tick would appear on a side of the label. In case the answer

was wrong, the participants had to keep trying with other labels, until they found the

correct one. When all the 4 exemplars were correctly answered, the participants could

proceed to the next screen (as explained in the procedure section) with an arrow button at

the bottom of the screen. Another arrow button could be used to go the previous

screen(s). Below each label there was a coloured bar with an indicator for the level of

learning achieved for the corresponding category (i.e. the moving average of correct

answers given for that category). The exemplars looked like rectangles of a neutral colour,

which contained 16 coloured elements arranged in a 4 by 4 grid and area for the labels to

stick onto. As in the previous experiment, the elements could be of 5 different shapes

(cross, star, ellipse, square and triangle) and 7 different colours (yellow, orange, red, light

blue, violet, blue and green), with a total of 35 possible combinations. 4.1 summarizes the

kinds of classification criteria used in this experiment.

Table 4.1 Simplified examples of the classification criteria for a participant assigned to group 1 (see
below for the explanation of the groups).

Category Criterion 1 Criterion 2

Dual 1 
(e.g. "Babed")

Click on any of the four blue 
triangles -> Music #1 is played

Click on any of the three green 
circles -> All green circles do 
the same (randomly chosen) 
movement (e.g. jump) at the 
same time

Dual 2 
(e.g. "Golev")

Click on any of the five red circles 
-> Music #2 is played

Click on any of the four yellow 
squares ->  All yellow squares 
do the same  (randomly 
chosen) movement (e.g. rotate) 
in turn

Single analogical
(e.g. "Liset")

Click on any of the three blue 
squares -> Music #3 is played

Single unrelated Click on any of the three yellow 
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(e.g. "Didom") circles -> All yellow circles do 
different randomly chosen 
movements (e.g. one fades, one 
changes color, one rotates) at the 
same time

Residual 
("Wrong")

Click on some of the four red 
squares -> Some randomly chosen 
elements do some random 
movement (e.g. a red square jumps, 
a blue circle rotates, a green triangle
jumps, etc.)

Figure 4.2 Two exemplars are labelled, and feedback (correct answer and wrong answer) is given.

In order to learn to correctly classify the exemplars, the participants had to click on the

elements inside them. When clicked, the elements could elicit a reaction, which could be

of three different kinds: 1. a music or a tone could be played with a particular instrument;

2. the elements could move; 3. both. The movements that the elements could make include

jumping, rotating, zooming, blurring, a change of shape or colour, etc. For some actions

(like zooming or jumping, ...) the volume of the played tone could be also synchronized

with the movement. On the one hand, this helped make the test more entertaining for

participants, because it resembled a game; on the other hand, that allowed an insight on
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the reasoning processes of participants. In fact every single click was recorded in order to

be later analysed.

Each exemplar contained 3 groups of elements: each group was formed of elements of the

same shape and colour, adjacent to each other. The number of elements for each group

varied between 3 and 5. The quantity was randomly chosen, as were the shape, colour and

position of each group inside the exemplar, and they varied even between exemplars of

the same category during each test. Therefore to sum up to 16 elements for each exemplar

a certain number of distractors, of unrelated shapes and colours, were added. For instance,

an exemplar of Golev category could be composed of 5 blue crosses, 5 orange triangles, 5

green stars and 1 blue square. Another exemplar of the same category (Golev) could be

composed of 5 yellow triangles, 4 blue squares, 5 red stars, 1 orange cross and 1 violet

cross. Clearly, neither the shapes nor the colours nor the number of the elements could

help to classify the exemplars, which makes this experiment different from Experiment 1.

In fact shapes, colours and quantities are randomly chosen, so the key resides just in the

reactions.
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Figure 4.3 Some of the 16 elements form 3 groups of same shape and colour, the remaining elements
are distractors. The lines show the three groups of elements in one exemplar of the Babed category.

In this experiment there are 4 different categories. Two of them are “dual  categories”

because they have 2 defining criteria, the other two are instead “single categories” because

they have just 1 defining criterion. We have a total of 6 classification criteria: of these

criteria, 3 have a similar structure (we shall call them “analogical”), whilst the other 3

have structures dissimilar from the former ones and also between them (we shall call them

“unrelated”). All of the 3 analogical criteria are defined by this rule: when participants

click on each element of the corresponding groups a music is played. For each criterion it

is always the same piece of music, but it’s different for criteria A1, A2 and A3 (i.e. criterion

A1 has piece #1, A2 has #2, A3 has #3). There are also other pieces of music present in the

test,  which  are  sometimes  played  when  clicking  on  distractors.  So  the  structural

commonality between the three analogical criteria lies in the fact that a music is played,

whilst the difference is in the piece of music which is played. The 3 distinct pieces of

music are chosen among 12 different ones and assigned randomly to each participant at

the  beginning  of  the  test.  The  remaining  9  pieces  of  music  are  instead  used  by  the

distractors. To give some instances, let’s reconsider the example which was made before in
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this chapter. An exemplar of Golev category is composed of 5 blue crosses, 5 orange

triangles, 5 green stars and 1 blue square; another exemplar of the same category (Golev)

is instead composed of 5 yellow triangles, 4 blue squares, 5 red stars, 1 orange cross and 1

violet cross. When participants click on each blue cross of the former exemplar, the same

piece of music is played as when each yellow triangle of the latter is clicked. So we can

infer that these exemplars belong to the same category (Golev, in this case): the structural

commonality between the two exemplars lies in the fact that, when the elements of one of

the three groups composing each exemplar are clicked, they elicit the same reaction (i.e.

play the same piece of music). The elements belonging to the other groups (i.e. the 5

orange triangles and the 5 green stars for exemplar 1; the 4 blue squares and the 5 red

stars for exemplar 2) show instead distinct reactions, which are different from each other

and from the one used for the classification criterion. Also some of the distractors (in the

example, the blue square, the orange cross and the violet cross) elicit distinct reactions,

but their behaviours are different from the one used for the classification criterion.

Each of the unrelated criteria (U1, U2 and U3) is instead defined by a distinct kind of

synchronicity between the reactions of the elements of the group, as follows: 

U1. When participants click on each element of the group for the U1 criterion the entire

group react with the same action (randomly chosen) at the same time. For instance, when

an element of the group is clicked, all the elements of the same group (included itself) will

rotate at the same time; when another element of the same group is clicked, all the

elements of the same group (included itself) will blink at the same time, and so on.
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U2. When participants click on each element of the group for the U2 criterion the entire

group react with the same action (randomly chosen) in turn. For instance, when an

element of the group is clicked it will zoom, then another element of the same group will

zoom at its turn, then another element will zoom and so on until they start back again.

Even in this case, when a different element of the same group is clicked, the elicited

reaction will be different: for instance, the element will blink and after it all of the

elements of the group will blink in turn.

U3. Finally, when participants click on each element of the group for the U3 criterion all

the elements of the group perform different actions (randomly chosen) at the same time.

For instance, when an element of the group is clicked, all the elements of the group

(included itself) will react: one element will change its colour, another one will fade,

another one will jump, and so on. As in the previous cases, for each element of the same

group which is clicked, the actions performed will be yet different for every element of the

group.

Figure  4.4 One element of the group with the U3 criterion (in this case, the yellow ellipses) was
clicked, and all the elements of the group perform different actions at the same time.
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Resuming,  we have  one  category  which  can be  classified  using one  of  the  analogical

criteria (A1) and/or one of the unrelated criteria (U1); another category can be classified

using another analogical criterion (A2) and/or another unrelated criterion (U2).  A third

category instead must be classified using the third unrelated criterion (U3), and the last

category must be classified using the third analogical criterion (A3). For each participant,

the assignment of a criterion to a category is random and just obeys one rule: for dual

categories (which have 2 defining criteria), one of the criteria has to be of the analogical

type, whilst the other criterion must be of the unrelated type. So participants can get to

classify the dual categories by learning the analogical criterion or the unrelated criterion

(or by learning both). Whilst as for single categories (which have just 1 defining criterion),

participants are obliged to classify them by learning their single criterion.

As we have already seen in the example above discussed, in each exemplar shown in the

test there are 3 groups of elements. Of these, 1 or 2 groups of elements are related to

some classification criterion (we shall  call  them “active groups”),  while  the remaining

group(s)  of  elements  are  not  related  to  any  classification  criteria  (we  shall  call  them

“non-active groups”). The groups of elements in the exemplars are always independent

from  each  other.  To  each  “active”  group  of  elements  is  randomly  assigned  one

classification  criterion,  so  there  is  a  one-to-one  correspondence  between  groups  and

criteria. Thus, in a dual category two groups are “active”, one for each criterion, and one

group is “non-active”; in a single category only one group is “active” (and corresponds to

one criterion) and two groups are “non-active”. In addition, as stated before, there is also a

variable number of distractors,  in order to sum up to 16 elements for each exemplar.

Some of  the remaining non-assigned elements,  which are randomly chosen,  are given
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random behaviours. However, these behaviours are always different from the ones used for

the classification criteria. For instance, an exemplar of Liset category is composed of 5

blue stars, 5 orange crosses, 5 green triangles (3 groups) and 1 violet square (distractor).

In this case, for example, the blue stars are the “active” group, because when participants

click on each blue star the same piece of music is played, which is the reaction related to

the  classification  criterion  (analogical);  the  orange crosses  and  the  green  triangles  are

instead the “non-active” groups,  because the elements belonging to these groups show

distinct  reactions,  which are different  from each other and from the one used for  the

classification criterion. Finally, the violet square is just a distractor element and also its

behaviour differs from the one used for the classification criterion.

In order to be sure that all the categories are learned and participants don't answer by

elimination (in fact, once participants have learned 3 of the 4 categories, they could

correctly classify the remaining category by elimination), a last category has been

introduced, named “Wrong”. This category doesn't have a definition of its own, since its

exemplars will be composed only by distractors. It is exactly this lack of classification

criterion that defines this category, which will be chosen when all the criteria for the other

categories fail. In order to make the task clear and simple, the name for this category must

be exemplary of its definition, which explains the name “Wrong”. 

So the introduction of this “non-category”  obliges participants to learn the classification

criterion of each category (or, for dual categories, at least one of the 2 possible

classification criteria). This non-category serves also another purpose. Given the

complexity of the criteria, it would be almost impossible to be sure that the task isn't

solved using some "shortcut", instead of finding the full criterion for each category. But
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this non-category has elements with behaviours similar to the ones defining the actual

categories. Therefore, without learning the complete criteria for the other categories, a

“Wrong” exemplar could be mistaken for an exemplar of another category.

For each participant, the assignment of a category to a label (Babed, Didom, Golev or

Liset) is random, except for the non-category, which is always "Wrong". 

The participants can solve the task in different ways. If, for example, they find rules A1,

A2, A3 and U3, it can be inferred that these criteria are more easily learned because the

structural similarities between A1, A2 and A3 help learning through analogy. Actually, A3

and U3 have to be necessarily learned because each of them is the only defining criterion

for each of the “single” categories. On the other hand, U1 and/or U2 could be discovered

instead of A1 and/or A2, showing that similarities can create confusion.

Table  4.2 Example  of one  of  the  three  possible  allocation  of criteria to categories. For dual
categories, participants can find the analogical criteria and/or the unrelated criteria.

Dual 
category 1

Dual 
category 2

Single 
analogical 
category 

Single 
unrelated 
category

Residual 
category

(e.g. Babed) (e.g. Golev) (e.g. Liset) (e.g. Didom) (Wrong)
A1 + U1 A2 + U2 A3 U3 Only 

distractors

4.2.3. Design

Three distinct groups of participants are created and the assignment of participants to

each group is random. The test is the same for each of the three groups, except for the

criterion used for one of the two single categories. One of the single categories, indeed, is

always defined by an analogical criterion (A1, A2 or A3). The distinction between A1, A2
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and A3 is merely casual, therefore these three criteria are interchangeable. On the

contrary, the other single category is defined by an unrelated criterion (U1, U2 or U3).

Since the criteria U1, U2 and U3 are much different between them, the difficulty of the test

could vary according to which criterion is assigned to the single category. That is why

three groups of participants are created, one group with the U1 criterion defining one of

the single categories, the second group with the U2 criterion defining one of the single

categories, and finally the third group with the U3 criterion defining one of the single

categories. So the presence of all the possible equivalent dispositions ensures that, even if

there are differences due to the different criteria, they are balanced by the design. This

design also allows estimate the resulting difficulty of the test for each unrelated criterion.

Besides, as stated above, at the very beginning of the test, for each participant is randomly

assigned the correspondence between name of categories (“Liset”, “Golev”, “Babed” and

“Didom”) and kind of categories (dual or single, defined by A1, A2, A3, U1, U2, U3), except

for the non-category which is always "Wrong". For instance, a participant from group 1

will have A1 and U3 criteria assigned to the category named “Babed”, U1 criterion assigned

to the category named “Didom”, A3 assigned to “Golev”, A2 and U2 assigned to “Liset”.

Another participant from group 1 will have U1 criterion assigned to the category named

“Babed”, A2 and U3 assigned to “Didom”, A1 and U2 assigned to “Golev” and A3 assigned

to “Liset”.

Table 4.3 Summary of the allocation of criteria to categories, for each group.  

Group Dual 
category 1

Dual 
category 2

Single 
analogical 
category 

Single 
unrelated
category

Residual 
category

1 A1 + U2 A2 + U3 A3 U1 Only distractors
2 A1 + U1 A2 + U3 A3 U2 Only distractors
3 A1 + U1 A2 + U2 A3 U3 Only distractors
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4.2.4. Procedure

Before starting the very test, participants are shown a screen where they are told to put

their headphones on and adjust the volume until they can clearly hear a music played by

the program. This ensures that participants have access to all of the multimedia features.

When participants click on the “Next” button, they are shown the instructions to the test in

the form of a cover story, which explains the task in a more entertaining, game-like way

(the full text is available in Appendix D). The story I made up involves a toy factory that

was experimenting a new machine to produce interactive toys. In the cover story, this

machine unfortunately didn't work well. It didn't label the toys, and some of them had

their circuits broken (see below about this last statement). Thus the factory hires an expert

(the participant) to discover how to classify the toys. The participant has to study the toys

by clicking on their composing elements to elicit some reactions, which provide the key to

classifying the toys. As stated above, in contrast to the previous experiment, in this

experiment shapes and colours are meaningless. The participant can try different labels

until the correct label is found for each toy. When the participant correctly classifies at

first try enough toys for each kind, the test ends.

After given these instructions, participants are shown a tutorial in which they are told how

to use the test interface. Popup instructions guide them to actions like closing or

re-opening the instructions tab, clicking on the interactive elements, dragging the labels on

the exemplars, recognizing and distinguishing between positive and negative feedbacks,

understanding that all of the 4 exemplars shown have to be answered, using the “Next”

and “Back” arrow buttons (which will be explained below), etc. 
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Figure 4.5 Popup instructions are given during the tutorial.

Once the tutorial is over, the very test begins. Four exemplars at a time are shown on the

computer screen, in random order. Five stacks of labels with the names of the 4 categories

(“Babed”, “Golev”, “Liset”, “Didom”) and the name “Wrong” (for the non-category) are

available on the left of the screen, one stack for each name. On the very first screen are

presented all of the 4 categories (i.e. no wrong exemplars) in random order. In the

subsequent 2 screens (i.e. 8 exemplars) are presented, on the whole (i.e. randomly

arranged), one exemplar for each category, and 4 wrong exemplars. Then the presentation

of categories is balanced, in order to present the same number of exemplars for each

category, plus a random number of wrong exemplars, every 4 screens.

To give an answer, the participant must drag a label over an exemplar. If the given answer

is correct, positive feedback is given. Otherwise negative feedback is given, and the

participant must try with another label, until the correct answer is found. When all of the

currently shown exemplars are correctly answered, a "Next" arrow button appears, to

proceed to the next four exemplars. As stated above, a "Back" arrow button is always
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available (except for the very first screen) to go back to the previously seen (and correctly

answered) exemplars.

Figure  4.6 When all the exemplars are correctly answered, a "Next" arrow button appears. The
"Back" arrow button is present from the second screen, to go back to the previously answered
exemplars.

The test ends when the participant gives 3 correct answers (at the first attempt, i.e. without

trying again) in a row for each category. This criterion is different from the one used in

the previous experiment, but ensures the same low probability of random solution. It is

chosen to minimize the length of the test, and therefore the boredom and probability of

distraction mistakes.

At the end of the test a debriefing question asks participants to write a report about the

classification criteria (to teach a worker to continue the job, according to the cover story).

The test was implemented in Macromedia Flash and all interactions were timed with an

accuracy of 1 millisecond and were recorded on a server. Recorded clicks and answers

were recorded locally and sent to the server in batches, in order to avoid the network

latency.
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4.2.5. A typical test session

A typical test session works very similarly to the first experiment. In the beginning the

participant is forced to answer randomly, and probably gives the wrong answers. So they

have to keep answering until they find the correct answers. Then they can go on to try to

answer the next exemplars, but they can also go back to compare the new exemplars to the

previous ones.

Some people extensively used these comparisons with previous exemplars, to the point

that they could extract all the needed information just seeing a few exemplars for each

category. Many people in contrast just ignored this opportunity and just kept going on,

relying on their memory. Two distinct strategies can be therefore imagined for these two

kinds of people (although it is a gradient, not a sharp division). The former kind uses a

more "scientific" strategy based on the falsification of hypotheses, while the latter uses

instead a strategy based on reinforcement.

As in the previous experiment, after a while the participant noticed some patterns, and

started to formulate hypotheses about the classification criteria. During this particular

stage, the answers the participant gave were sometimes correct and sometimes incorrect,

but they were no longer random, instead they followed their hypothesized rules. It is

therefore interesting to analyse the errors made during this period, in order to better

understand the type of confusion encountered.

At some point, the participant started to give systematically the right answer to some

category, and that is the point we call "learning point" for that category (see below for the

algorithm).
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The learning processes for the different categories can be unrelated (null hypothesis) or

related. In particular, the learning of the three analogical categories (i.e. A1, A2 and A3)

can be related (learning one can help learning the other), when the found criteria are the

analogical ones.

After a criterion is found for a category, for all the subsequent exemplars the participant

starts to click randomly until he finds the group of elements corresponding to that

criterion, then he gives the correct answer. Therefore the last click before answering is

with high probability on an element having the found criterion. The analysis of these last

clicks can reveal which criterion (for the dual categories) the participants find.

After learning the classification criteria for all the four categories which have classification

criteria, using exclusion the participant can correctly classify also the "Wrong" category.

At this point the participant quickly reaches the learning criterion for each category, and

the test ends. At this stage all four learning points are defined, and it is possible to look at

the intervals between them, to determine if the learning of a category is related or not to

the learning of the other ones.

4.2.6. Estimation of learning points

As in the previous experiment, many of the results are based on the estimation of learning

points. So it can be useful to briefly present the algorithm used for their estimation (Figure

4.7). It is very similar to the one used in the previous experiment.

Learning points are estimated independently for each category, using a moving average of

the correct answers to the shown exemplars of that category. As said above, participants
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are considered to have learned a category when they give at least 3 correct answers in a

row at the first attempt for that category. The learning point for a category is therefore the

first correct answer after which the participant doesn't make mistakes anymore (for that

category).

for each answer for the given category, starting from the end {
calculate a moving sum of length 3 of the correct answers (at first
attempt) for the given category;
when the moving sum = 3 {

go backward until it is < 3 {
the answer immediately following is the learning point;

}
}

}

Figure 4.7 Algorithm for the estimation of learning points.

Green circles are correct answers at first attempt, red circles wrong answers. The example represents
learning of Category A1.
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4.3. Results

4.3.1. Difficulty

Two different measures of performance can be extracted from the test, as in the previous

experiment: the number of exemplars and the amount of time needed to finish. 

4.3.1.1. Differences between groups

An analysis of variance showed no significant difference of difficulty between the groups

of participants.

Both time and number of shown exemplars were analysed  and compared across the

groups. No significant difference was found (Time: F(2,25)=1.19, p>.30; Shown

exemplars: F(2,25)=.516, p>.60; see Figure 4.8, 4.4 and 4.5).

Table 4.4 Descriptive statistics for number of shown exemplars to end

Group Mean Std. Deviation N
1 42.11 29.801 9
2 53.22 19.766 9

3 45.30 21.370 10

Total 46.82 23.517 28
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Table 4.5 Descriptive statistics for time to end

Group Mean Std. Deviation N
1 29.2611 22.58297 9
2 39.4870 16.29889 9

3 27.8367 13.55484 10

Total 32.0393 17.85130 28

It is reasonable from these results to think that the 3 unrelated criteria (U1, U2, U3) are of

equal difficulty and that they do not introduce any bias. In any case, all the remaining

analyses will be done also separately to check that across the groups there are not different

results, and only in that case a joint analysis will be performed.
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Figure 4.8 Time and number of exemplars required to finish the test
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4.3.1.2. Other variables

As in the previous experiment, differences of difficulty were tested also for variables such

age, sex, education and discipline of studies, in addition to the environment variable. None

of these factors was significant, assuring that no bias was introduced, and that the results

can be generalized to a population broader than that of Computer Science.

4.3.2. Analysis of Clicks

The novel factor introduced in this experiment is the presence of alternative solutions.

This can test the prediction that when given alternative solutions, people find similar

criteria instead of dissimilar ones. If they do so, it can be inferred that analogy helps

finding similar criteria.

Because the exemplars are interactive, it is possible to find out which solution was

discovered by each participant simply by analysing their clicks. As explained above, it is

sufficient to see on which group of elements the participant clicked just before answering

(obviously after they learned that category).

In fact the first clicks of a participant on a novel exemplar are random, until they find

elements corresponding to the learned criterion, at which point they can give their answer.

Therefore the total number of clicks on other elements is greater than the number of

clicks on significant elements, but the very last click is probably on a significant element.

For the dual categories (that is, the categories defined by two alternative criteria), after

their learning points, the last clicks before answering are counted both for the elements
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pertaining to the analogical criteria and to the unrelated criteria. A sign test was done to

confront the last clicks on analogical and unrelated elements. 

Although the group factor should have no effect on how much learning of similar

categories is related, a preliminary analysis was done on each group separately. Given the

small size of the group, no statistically significant result was expected.

Table 4.6 Frequencies and significance of the sign comparisons of last clicks on analogical elements
Vs unrelated elements.

Group Analogical > Unrelated Analogical < Unrelated P N

1 8 1 .039 9

2 7 2 .180 9

3 8 2 .109 10

Total 23 5 .001 28

In all the groups the clicks on the analogical elements were more than the clicks on

unrelated elements. Given that there are no differences between the groups, a joint

analysis was performed. The clicks on the analogical elements were significantly more

than on unrelated elements (p < 0.001), showing that the analogical criteria were found

more often than the unrelated criteria (see Table 4.6).

The new and most important result of this experiment is that: even if given an alternative,

the participants found the analogical criteria. This is another confirmation of our

hypothesis that analogy can be used between simultaneously-learned categories. The

similarities between the analogical criteria help to find those criteria instead of the

unrelated criteria. In this way it is possible to minimize the memory and time efforts.
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4.3.3. Learning intervals

In order to test the prediction that learning of similar categories is related, the same

method was used as in the previous experiment. Given the different design of this

experiment, some changes had to be made. In fact, in this experiment there are only two

kinds of categories: the "analogical categories" (i.e. the ones that contain one of the three

analogical criteria: A1, A2 and A3) and the "unrelated category" (i.e. the category

containing only an unrelated criterion - U1, U2, U3, according to the group). 

Since the "Wrong" category is derived by exclusion, and is consequently "learned"

together with the last learned category, it is not considered in the analysis of the learning

intervals. It  would be a mistake to consider the "Wrong" category a learned category,

because its exemplars can be correctly identified only by exclusion, since they do not have

any real classification criterion (and therefore after all the other classification criteria are

learned and excluded). 

The analysis was performed only for the 23 participants who found the analogical criteria,

since for the other cases it is meaningless.  In fact, if the criteria found by a participant are

all  dissimilar, it  is pointless to check if the learning times of two categories are more

related than the others. Only if a participant found the analogical criterion for the dual

category, there could be a structural similarity between analogical criteria which could

help learning.
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Figure 4.9 Points of learning

As in the previous experiment, all the intervals between the learning points (Figure 4.9)

are calculated (i.e. A1A2, A1A3, A1Ux, etc.), in terms of the number of exemplars shown.

Then an average of the intervals between analogical categories (AnalogIntAvg) is

computed:

AnalogIntAvg=
A1 A2+ A1 A3+ A2 A3

3 (4.1)

As in the previous experiment, the average of all the intervals between all the categories

(AllIntAvg) is used as a baseline for comparison. In fact, if the four learning points are all

independent from each other, a randomly chosen learning interval should be

approximately equal to this average.

If this latter average (AllIntAvg) is greater than the former (AnalogIntAvg), it can be

inferred that learning of similar categories is related.

Like in the previous chapter, a preliminary MonteCarlo was performed to compute the

expected number of times AllIntAvg > AnalogIntAvg. This simulation showed that this

comparison is positive roughly 38% of times and negative the remaining 62%, and that
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the distribution is not normal (Appendix C). Therefore it was not possible to use the t-test

or other parametric tests, and a binomial test has been instead performed.

Although the group factor should have no effect on how much learning of similar

categories is related, a preliminary analysis was done on each group separately. Given the

small size of the group, no statistically significant result was expected, but the trends can

always be studied. As shown in the 4.7, for each group the average of the intervals

between analogical categories (AnalogIntAvg) is significantly less than the average of all

the intervals (AllIntAvg). Given that there are no differences between the groups, a joint

analysis was performed.

In the joint analysis the average of the intervals between analogical categories

(AnalogIntAvg) is less than the average of all the intervals (AllIntAvg) in 91% of the

cases (much more than the expected 38%, binomial test p < 0.001, see 4.7), meaning that

the analogical categories are more related to each other than expected. This result supports

the prediction that learning of similar categories is related, and thus the hypothesis that

analogy can be used early in learning, between simultaneously learned categories.

Table 4.7 Frequencies of the comparisons of interval averages and significance of the binomial tests.

Group AllIntAvg > AnalogIntAvg AllIntAvg < AnalogIntAvg N Proportion P

1 6 2 8 .75 .034

2 7 0 7 1 .001

3 7 0 7 1 .001

Total 20 2 22 .91 .001
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4.3.4. Analysis of Errors

From the hypothesis 2b, that learning consists of two phases where partial categories are

first formed and then refined to create the final categories, stems the prediction that before

learning  is  complete,  any  errors  in  categorisation  are  not  random but  they  are  more

frequent across similar categories.  In other terms, it is more probable to say that an A1

exemplar belongs to the A2 category, than it belongs to Ux. Obviously, this analysis can be

performed only for the 23 participants who found the analogical criteria, since for the

other cases it is meaningless, as explained above for the learning intervals.

The details of this prediction and subsequent analysis are the same as in the first

experiment.  The only difference from the first experiment is that only three regions can

be marked on this contingency table. On the diagonal are the correct answers. The

remaining incorrect answers can be further divided into only two regions: the mistakes

classifying an exemplar inside the analogical type of category and the answers completely

wrong (see Figure 4.10). Since the "Wrong" category is derived by exclusion, and is

consequently "learned" together with the last learned category, it is not considered in the

analysis of the errors.
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Figure 4.10 The contingency table of Given VS Expected number of answers. Three regions can be
marked: the correct answers, the mistakes classifying an exemplar in the other analogical category,
and the completely incorrect answers.

Although the group factor should have no effect on the distribution of errors, a

preliminary analysis was done on each group separately. Given the small size of the

groups, no statistically significant result was expected, but the trends can always be studied

and compared.

Table  4.8 Frequencies and statistics of the sign comparisons of given VS expected number of
mistakes classifying an exemplar in the other analogical category, for each interval, for each group.
In bold the significant results.

Count Other Analogical Category Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 1 3 2 3 1
2 3 1 3 1
3 4 4 1

1 Total 10 3 10 1
2 1 2 6 .289

2 1 6 .125
3 2 6 .289

2 Total 5 0 18 .011
3 1 2 6 .289

2 1 6 .125
3 2 6 .289

3 Total 5 0 18 .011
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Table  4.9 Frequencies and statistics of the sign comparisons of given VS expected number of
completely incorrect answers, for each interval, for each group. In bold the significant results.

Count Completely Incorrect Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 1 2 4 2 1
2 4 3 1
3 4 4 1

1 Total 10 4 9 1
2 1 3 3 2 1

2 5 2 .453
3 5 3 .727

2 Total 13 3 7 .263
3 1 7 1 .700

2 7 .160
3 6 2 .289

3 Total 20 0 3 .001

Table  4.10 Frequencies and statistics of the sign comparisons of given VS expected number of
correct answers, for each interval, for each group.

Count Correct Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 1 4 3 1 .375
2 3 1 3 1
3 6 0 2 .289

1 Total 13 4 6 .167
2 1 3 1 4 1

2 4 0 3 1
3 5 0 3 .727

2 Total 12 1 10 .832
3 1 3 1 4 1

2 3 1 3 1
3 4 0 4 1

3 Total 10 2 11 1

As shown in the 4.8, 4.9 and 4.10, the comparisons between given and expected number

of answers are similar for each group. Because the size of each group was too small to

give significant results separately, and there was no reason to keep them separate, a joint

analysis was performed (the results are the totals in 4.8, 4.9 and 4.10).
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Figure 4.11 Sums of the sign comparisons of given VS expected number of answers for each region
of the contingency table, for each interval, joint analysis. 

Sum = count (given > expected) - count (given < expected)

As shown by 4.8, 4.9 and 4.10 and Figure 4.11, the sign tests between given and expected

number of answers confirm the results of the first experiment:

• In the first interval (0 - 0.333) there are no significant results. The number of given

answers in each region of the contingency table (Figure 4.10) are not statistically

different from what randomly expected. 

• In the second interval (0.333 - 0.666) the incorrect analogical answers occurred

more often than expected. Both the completely wrong answers and the correct

answers are not different from what randomly expected.

108



• In the third interval (0.666 - 1) the incorrect analogical answers occurred more

often than expected and the completely wrong answers occurred less often than

expected.

The pattern that emerges is of particular interest and confirms the learning dynamics

already emerged in the first experiment. These learning dynamics have a middle period of

"partial learning" for the categories which have similar criteria (it is worth to remember

that this analysis was performed only for people who found the analogical criteria). In fact,

the mistakes across similar categories occur more frequently than would be expected if

these mistakes were random, while the mistakes across dissimilar categories (i.e. between

different kinds of categories) are not different from what would be expected if these errors

were random. 

This result further supports the prediction that before learning is complete, any errors in

categorisation are not random but they are more frequent across similar categories. In

turn, this confirms the hypothesis that analogical reasoning starts to operate from the very

beginning of learning, and helps finding similarities even between categories which are

only partially learned.

4.3.5. Use of the previous exemplars

In contrast to the previous experiment, no notepad was available, and the participants

weren't allowed to take notes in any way. Instead two arrows allowed them to go back and

forth through the previously seen (and correctly answered) exemplars. Thus, before giving

any answer, they could go back to compare the present exemplar(s) to the previous ones.
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Because all the clicks, before and after answering, were recorded, a measure of the use of

the previous exemplars during learning is the number of clicks done after answering,

before any learning has occurred.

A Pearson correlation with the difficulty showed that people who go back more often find

the task easier (correlation with number of exemplars: r = - .459 p < .02; with time: r = - .

260 p > .05). This result is consistent with the theory previously outlined, that some

people use a more scientific strategy based on the falsification of hypotheses, and some

other use instead a strategy based on reinforcement. Given the complexity of the task, it

isn't surprising that the more "scientific" people find it easier to solve it. This result is also

a confirmation of the hypothesis that people operate under memory constraints.

4.4. Summary

This second experiment tested whether for people it is easier to find structurally similar

categorization criteria or structurally dissimilar ones,  when  given  a  choice, and also

confirmed the results from the first experiment. The results support the hypothesis that

structural similarity helps finding categorization criteria, a fact that is also an indication of

the pervasiveness of analogical reasoning. Other results from the previous experiment are

also confirmed by the present experiment: the learning of similar categories is related, and

a phase of partial learning precedes the discovery of the final categories. This latter result

is an indication that analogical reasoning starts to operate from the beginning, when no

concept is clearly learned. It also suggests that the learning of similar categories is in fact a

single process.
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A limitation of this experiment is that the analogical criteria are defined by music. If a

participant has a preference for music (e.g. if music were perceptually more salient), this

could have biased the results. In order to exclude this possibility and generalize the results,

a third experiment had to be performed, with analogical criteria defined by other kinds of

actions.
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Chapter 5

Experiment 3

5.1. Introduction

The third  experiment  is  very  similar  to  the  second,  of  which  it  is  an  extension.  The

hypotheses tested are the same, as well as the predictions, as are the constraints that arise

from them and the analyses performed.

During the execution of the second experiment, the doubt arose whether the analogical

criteria were preferred because they were similar, or because music was a more salient

feature than movement. This third experiment was performed to generalize the results to

the case in which the similar criteria are based on movement. 

Some participants  in  experiment  2  reported that  remembering five categories  was too

difficult, so in this experiment there are only four categories. Apart from these differences,

the present experiment is identical to the previous one.

5.2. Method

5.2.1. Participants

As in experiment 2 the test was administered to an heterogeneous set of participants.

They were both from inside and outside the university, of various ages and educations, and
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the test was performed in different environments with different levels of supervision. All

these factors were recorded and analysed to test for differences in difficulty, and also in

this  experiment  no  significant  difference  was  found.  This  assures  that  no  bias  was

introduced, and allows us to generalize the results.

Participants were 41 volunteers randomly chosen: 21 Males and 20 Females, average age

26.1 (SD 9.4). They were randomly assigned to the four groups: 11 for group number 2,

10 each to the other three groups (see below for the experiment design).

5.2.2. Materials

Differently  from the second experiment,  in  this  experiment  there are only  three main

categories (Babed, Didom, Golev), plus the residual category Wrong. Therefore on the left

of each screen the participants  could see only 4  stacks of draggable labels. The task is

identical to the previous experiment.

Figure  5.1 A screen from a test  just  started.  Four exemplars  are  shown,  with on the  left  four
"stacks" of labels which can be dragged on the exemplars.
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Table 5.1 Simplified examples of the classification criteria for a participant assigned to group 1 (see
below for the explanation of the groups).

Category Criterion 1 Criterion 2

Dual
(e.g. "Babed")

Click on any of the three red 
squares -> All red squares do the 
same movement (e.g. jump) at the 
same time

Click on any of the four green 
crosses -> Music #1 is played

Single analogical
(e.g. "Golev")

Click on any of the three yellow 
circles -> All yellow circles do the 
same movement (e.g. rotate) at the 
same time

Single unrelated
(e.g. "Didom")

Click on any of the three blue stars 
->  All blue stars do the same 
movement (e.g. zoom) in turn

Residual 
("Wrong")

Click on some of the four green 
crosses -> Some randomly chosen 
elements do some random 
movement (e.g. a red square jumps, 
a blue star rotates, a green cross 
jumps, etc.)

In this  experiment  there  are 3 different  categories.  One of them is  a “dual  category”

because it has 2 defining criteria, the other two are instead “single categories” because

they have just 1 defining criterion. 5.1 summarizes the kinds of classification criteria used

in this experiment.

So for example, for one participant the Babed category could have one group of elements

which when clicked always jump at the same time, and another group of elements which

when clicked always play the same music. The Golev category could have one group of

elements which clicked always rotate at the same time, which is a criterion structurally

similar to the first criterion of the Babed category. The Didom category could have one

group of elements which when clicked always zoom in turn.
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For each group of participants there are 4 classification criteria which must be learned in

order to solve the test:  of these criteria, 2 have a similar structure (we shall  call them

“analogical” - in the example, jump or rotate at the same time), whilst the other 2 have

structures dissimilar from the former ones and also between them (we shall  call  them

“unrelated” - in the example, play a music or zoom in turn).

Differently from the second experiment, the analogical criteria are not based on music but

on synchronicity of movement, and are practically identical to the U1 and U2 criteria from

the second experiment. The only difference is that in this experiment the criteria which

were called U1 and U2 must each have two instantiations so they can act as analogical

criteria (like criteria A1 and A2 in the second experiment). Therefore there will be in total

four analogical criteria: AX1, AX2, AY1 and AY2. Two groups of participants will have AX1

and AX2 for the analogical criteria (in the example, jump or rotate at the same time), while

two other groups will have AY1 and AY2 (e.g. zoom or fade in turn). 

• AX1 and AX2

When participants click on each element of the group for criteria AX1 or AX2 the

entire group react with the same action at the same time. For instance, when an

element  of  the group is  clicked,  all  the elements  of  the same group (included

itself)  will  rotate  at  the  same  time.  For  each  criterion  it  is  always  the  same

movement, but it is different for criteria AX1 and AX2 (e.g. criterion AX1 jumps, AX2

rotates). The two movements are chosen among the 10 available movements and

assigned randomly to each participant at the beginning of the test. 
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So the structural  commonality between the two criteria  lies in the fact  that  an

action is performed at the same time, but the kind of action is different for the two

criteria.

• AY1 and AY2

When participants click on each element of the group for criteria AY1 or AY2  the

entire group react with the same action in turn. For instance, when an element of

the group is clicked it will zoom, then another element of the same group will

zoom at its turn, then another element will zoom and so on until they start back

again. For each criterion it is always the same movement, but it is different for

criteria AY1 and AY2. (e.g. criterion AY1 zooms, AY2 fades). The two movements

are chosen among the 10 available movements  and assigned randomly to each

participant at the beginning of the test. 

So the structural  commonality between the two criteria  lies in the fact  that  an

action is performed in turn, but the kind of action is different for the two criteria.

For each group of  participants  one of  the unrelated criteria  (U) is  always defined by

music, as happened for the A1, A2 and A3 criteria in the second experiment, where a piece

of music was played. Since there is only one version of this criterion in this experiment,

the piece of music played is always the same for the associated category, and is assigned

randomly to each participant at the beginning of the test. There are also other pieces of

music in the test, which are sometimes played when a distractor element is clicked.
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The other unrelated criteria depends on which analogical criteria are used for the group of

participants, because this experiment was designed to counterbalance and test the effect of

any possible salience or preference of one kind of criteria over another kind (e.g. music

over synchronised movements). 

If the group of participants uses criteria AX1 and AX2 for the analogical criteria (e.g. jump

or rotate at  the same time),  the other unrelated criteria  is  AY1 (e.g.  zoom in turn),  if

instead the group uses criteria AY1 and AY2 for the analogical criteria (e.g. zoom or fade in

turn), the other unrelated criteria is AX1 (see 5.3 in the next section).

Resuming,  we have  one  category  which  can be  classified  using one  of  the  analogical

criteria and/or one of the unrelated criteria. A second category instead must be classified

using the second unrelated criterion, and the last category must be classified using the

second analogical criterion.

The groups of elements in the exemplars are always independent from each other. To each

“active” group of elements is randomly assigned one classification criterion, so there is a

one-to-one correspondence between groups and criteria. Thus, in the dual category two

groups are “active”,  one for each criterion,  and one group is  “non-active”;  in a  single

category only one group is “active” (and corresponds to one criterion) while two groups

are “non-active”. In addition there is also a variable number of distractors, in order to sum

up to  16 elements  for  each exemplar.  Some of  the remaining  non-assigned elements,

which are randomly chosen, are given random behaviours. However, these behaviours are

always different from the ones used for the classification criteria.
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In order to be sure that all the categories are learned and participants don't answer by

elimination  (in  fact,  once  participants  have  learned  2  of  the  3  categories,  they  could

correctly classify the remaining category by elimination), as in the second experiment a

last category has been introduced, named “Wrong”. This category doesn't have a definition

of its own, since its exemplars are composed only by distractors. It is exactly this lack of

classification criterion that defines this category, which will be chosen when all the criteria

for the other categories fail. In order to make the task clear and simple, the name for this

category must be exemplary of its definition, which explains the name “Wrong”. 

So the introduction of this “non-category” obliges participants to learn the classification

criterion  of  each  category  (or,  for  dual  categories,  at  least  one  of  the  2  possible

classification  criteria).  This  non-category  serves  also  another  purpose.  Given  the

complexity of the criteria, it  would be almost impossible to be sure that the task isn't

solved using some "shortcut", instead of finding the full criterion for each category. But

this non-category has elements with behaviours similar to the ones defining the actual

categories. Therefore, without learning the complete criteria for the other categories, a

“Wrong” exemplar could be mistaken for an exemplar of another category. 

For  each  participant,  the  assignment  of  a  category  to  a  label  (“Babed”,  “Didom”  or

“Golev”)  is  random,  except  for  the  non-category,  which  is  always  "Wrong".  The

assignment of a criterion to a category is random and just obeys one rule: for the dual

category (which has 2 defining criteria and therefore 2 active groups of elements), one of

the criteria has to be of the analogical type, whilst the other criterion must be of the

unrelated  type.  So  participants  can  get  to  classify  the  dual  category  by  learning  the

analogical criterion or the unrelated criterion (or by learning both). Whilst as for single
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categories  (which  have  just  1  defining  criterion  and  therefore  just  1  active  group  of

elements), participants are obliged to classify them by learning their single criterion.

The participants can solve the task in different ways. If, for example, the dual category is

defined by both criteria AX1 and U1 (as in the example in 5.2) and the single categories are

each defined by criteria AX2 and AY1, the participant can solve the test finding criteria AX1,

AX2 and AY1 or instead U1, AX2 and AY1.

If they find criteria AX1, AX2 and AY1, it can be inferred that these criteria are more easily

learned because the structural similarities between AX1 and  AX2 help learning through

analogy. Actually, AX2 and AY1 have to be necessarily learned because each of them is the

only defining criterion for each of the “single” categories. On the other hand, U1 could be

discovered instead of AX1, showing that similarities can create confusion.

Table  5.2 Example  of one of the four possible  allocations of criteria to categories. For the dual
category, participants can find the analogical criteria and/or the unrelated criteria.

Dual category Single analogical 
category 

Single unrelated 
category

Residual category

(e.g. Babed) (e.g. Golev) (e.g. Didom) (Wrong)
AX1 + U1 AX2 AY1 Only distractors
Jump at the same time 
+ Play a music

Rotate at the same 
time

Zoom in turn Random 
behaviours

5.2.3. Design

Four distinct groups of participants are created and the assignment of participants to each

group is random. The test is the same for each of the four groups, except for the criteria

used for the definition of categories. 
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As said above, in this experiment there are two kinds of analogical criteria, based on the

unrelated criteria U1  and U2 from the second experiment, while the unrelated U criterion

in this experiment is based on the criteria A1, A2  and A3 from the second experiment. In

this way, combining the two experiments, each of the three kinds of criteria is used both

as analogical and unrelated, and when used as unrelated it is used both in a single and in a

dual category. In other terms, all kinds of criteria serve all the possible roles in the design

of the experiment, ensuring a complete balancing.

Two groups of participants will have the analogical criteria AX1 and AX2, while two other

groups will have AY1 and AY2. The dual category is defined by two criteria, one of which is

one of these two analogical criterion (as explained above). The other analogical criterion

defines one of the single categories. The other criterion defining the dual category and the

other criterion defining the remaining single  category,  are alternated between the two

groups. One of these alternative criteria is U, the other, as explained above, depends on

the  analogical  criteria.  If  the  group of  participants  uses  criteria  AX1 and  AX2 for  the

analogical criteria, the other unrelated criteria is AY1, if instead the group uses criteria AY1

and AY2, the other unrelated criteria is AX1 (see 5.3).

The presence of all the possible equivalent permutations  ensures that, even if there are

differences due to the different criteria, they are balanced by the design. This design also

allows to estimate the resulting difficulty of the test for each permutation of the criteria.

Besides, as stated above, at the very beginning of the test, for each participant is randomly

assigned the correspondence between name of categories (“Didom”, “Golev”  and

“Babed”) and kind of categories (dual or single, analogical or unrelated), except for the

non-category which is always "Wrong". For instance, a participant from group 1 will have
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AX1 and U criteria assigned to the category named “Babed”, AY1 criterion assigned to the

category named “Didom” and AX2 assigned to “Golev”. Another participant from group 1

will have AY1 criterion assigned to the category named “Babed”, AX2 assigned to “Didom”

and AX1 and U assigned to “Golev”.

Table 5.3 Summary of the allocation of criteria to categories, for each group.  

Group Dual 
category

Single analogical 
category 

Single unrelated 
category

Residual 
category

1 AX1 + U AX2 AY1 Only distractors
2 AX1 + AY1 AX2 U Only distractors
3 AY1 + U AY2 AX1 Only distractors
4 AY1 + AX1 AY2 U Only distractors

5.2.4. Procedure

The  procedure  is  identical  to  experiment  2,  except  that  it  is  adapted  for  only  four

categories.

5.3. Results

5.3.1. Difficulty

As in the two previous experiments, two different measures of performance are extracted

from the test: the number of exemplars needed to finish and the amount of time needed to

finish.

Of the 41 volunteers who finished the test, 2 had to be excluded as outliers (they exceeded

by more than 3 standard deviations the average time needed to finish). 
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5.3.1.1. Differences between groups

An analysis of variance showed no significant difference of difficulty between the groups

of participants.

Both time and number of shown exemplars were analysed  and compared across the

groups. No significant difference was found (Time: F(3,35)=.542, p>.60; Shown

exemplars: F(3,35)=1.687, p>.15; see Figure 5.2, 5.4 and 5.5).

Table 5.4 Descriptive statistics for number of shown exemplars to end

Group Mean Std. Deviation N

1 19,50 17,75 10

2 20,20 10,78 10

3 37,11 32,02 9

4 31,90 18,34 10

Total 26,92 21,33 39

Table 5.5 Descriptive statistics for time to end

Group Mean Std. Deviation N

1 33,47 20,48 10

2 26,92 25,24 10

3 35,95 21,41 9

4 39,07 20,82 10

Total 33,80 21,69 39

It is reasonable from these results to think that all the classification criteria  are of equal

difficulty and that they do not introduce any bias. In any case, all the remaining analyses
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will be done also separately to check that across the groups there are not different results,

and only in that case a joint analysis will be performed.

Figure 5.2 Time and number of exemplars required to finish the test

5.3.1.2. Other variables

As in the previous experiment, differences of difficulty were tested also for variables such

age, sex, education and discipline of studies, in addition to the environment variable. None

of these factors was significant, assuring that no bias was introduced, and that the results

can be generalized to a population broader than that of Computer Science.
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5.3.2. Analysis of Clicks

As in the previous experiment, this experiment has alternative solutions. This can test the

prediction that when given alternative solutions, people find similar criteria instead of

dissimilar ones. If they do so, it can be inferred that analogy helps finding similar criteria.

As in the previous experiment, for the dual categories (that is, the categories defined by

two alternative criteria), after their learning points, the last clicks before answering are

counted both for the elements pertaining to the analogical criteria and to the unrelated

criteria. A sign test was done to confront the last clicks on analogical and unrelated

elements. 

Although the group factor should have no effect on how much learning of similar

categories is related, a preliminary analysis was done on each group separately. Given the

small size of the group, no statistically significant result was expected, but the trends can

always be studied.

Table 5.6 Frequencies and significance of the sign comparisons of last clicks on analogical elements
Vs unrelated elements.

Group Analogical > Unrelated Analogical < Unrelated Ties P N

1 6 4 0 .377 10

2 6 4 0 .377 10

3 5 3 1 .363 9

4 7 3 0 .172 10

Total 24 14 1 .072 39

In all the groups the clicks on the analogical elements were more than the clicks on

unrelated elements. Given that there are no differences between the groups, a joint

analysis was performed. The clicks on the analogical elements were not significantly more
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than on non-analogical elements. Given the low power of the sign test and the closeness to

significance, a Wilcoxon signed ranks test was also performed, which was significant (p <

0.01). The trend is the same as in the previous experiment, that is, the analogical criteria

were found more often than the non-analogical one. 

Although the preference for similar criteria over separable ones is  weaker than in the

previous experiment, it is still present, and is the same in each group. This means that in

the  previous  experiment  the  preference  wasn't  caused  by a  greater  salience  of  music.

When the similar criteria are defined by movements they are still preferred to separable

criteria. Therefore the similarity between criteria is the crucial factor, and not some bias

introduced by a greater salience of some feature. 

This  is  the  most  important  result  of  this  experiment;  it  provides  confirmation  of  and

permits generalization of the results of the previous experiment and eliminates the the

hypothesis that they were caused by some bias. The similarities between the analogical

criteria help to find those criteria instead of the unrelated criteria. 

5.3.3. Learning intervals

In order to test the prediction that learning of similar categories is related, the same

method was used as in the previous experiment. Given the different design of this

experiment, some changes had to be made. In fact, in this experiment there are only two

"analogical categories" (i.e. the ones that contain one of the two analogical criteria) thus

there is only one interval, and there is no need to compute an average. 
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Since the "Wrong" category is derived by exclusion, and is consequently "learned"

together with the last learned category, it is not considered in the analysis of the learning

intervals. It  would be a mistake to consider the "Wrong" category a learned category,

because its exemplars can be correctly identified only by exclusion, since they do not have

any real classification criterion (and therefore after all the other classification criteria are

learned and excluded). 

The analysis was performed only for the 24 participants who found the analogical criteria,

since for the other cases it is meaningless. In fact, if the criteria found by a participant are

all  dissimilar, it  is pointless to check if the learning times of two categories are more

related than the others. Only if a participant found the analogical criterion for the dual

category, there could be a structural similarity between analogical criteria which could

help learning.

Figure 5.3 Points of learning

As in the previous experiment, all the intervals between the learning points (Figure 5.3)

are calculated (A1A2, A1U, A2U), in terms of the number of exemplars shown. 

As in the previous experiment, the average of all the intervals between all the categories

(AllIntAvg) is used as a baseline for comparison. In fact, if the three learning points are
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all independent from each other, a randomly chosen learning interval should be

approximately equal to this average.

If this average (AllIntAvg) is greater than the interval  between  the  two  analogical

categories, it can be inferred that learning of similar categories is related.

Like in the previous chapter, a preliminary MonteCarlo was performed to compute the

expected number of times AllIntAvg > A1A2. This simulation showed that this comparison

is positive roughly 44% of times and negative the remaining 56%, and that the distribution

is not normal (Appendix C). Therefore it was not possible to use the t-test or other

parametric tests, and a binomial test has been instead performed.

Although the group factor should have no effect on how much learning of similar

categories is related, a preliminary analysis was done on each group separately. Given the

small size of the group, no statistically significant result was expected, but the trends can

always be studied. As shown in the 5.7, for two  groups the interval  between the two

analogical categories is significantly less than the average of all the intervals (AllIntAvg),

and for the remaining two groups the trend is the same. Given that there are no differences

between the groups, a joint analysis was performed.

In the joint analysis the interval between the two analogical categories  is less than the

average of all the intervals (AllIntAvg) in 88% of the cases (much more than the expected

44%, binomial test p < 0.001, see 5.7), meaning that the analogical categories are more

related to each other than expected. This result further  confirms  the prediction that
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learning of similar categories is related, and thus the hypothesis that analogy can be used

early in learning, between simultaneously learned categories.

Table 5.7 Frequencies of the comparisons of interval averages and significance of the binomial tests.

Group AllIntAvg > AnalogIntAvg AllIntAvg < AnalogIntAvg N Proportion P

1 5 1 6 .83 .063

2 5 1 6 .83 .063

3 5 0 5 1 .016

4 6 1 7 .86 .032

Total 21 3 24 .88 .001

5.3.4. Analysis of Errors 

From the hypothesis that learning is split in a first phase of partial learning, followed by a

phase of refinement, stems the prediction that before learning is complete, the errors are

not random but they are more frequent across similar categories. In other terms, it is more

probable to say that an A1 exemplars belongs to the A2 category, than it belongs to U.

Obviously, this analysis can be performed only for the 24 participants who found the

analogical criteria, since for the other cases it is meaningless, as explained above for the

learning intervals.

The details of this prediction and subsequent analysis are the same as in the second

experiment.  The only difference from the second  experiment is that the  analogical

categories are only two.
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Figure 5.4 The contingency table of Given VS Expected number of answers. Three regions can be
marked: the correct answers, the mistakes classifying an exemplar in the other analogical category,
and the completely incorrect answers.

Although the group factor should have no effect on the distribution of errors, a

preliminary analysis was done on each group separately. Given the small size of the

groups, no statistically significant result was expected, but the trends can always be studied

and compared.

Table 5.8 Frequencies and statistics of the sign comparisons of given VS expected number of
mistakes classifying an exemplar in the other analogical category, for each interval, for each group.
In bold the significant results.

Count Other Analogical Category Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 1 2 2 2 1
2 3 3 1
3 2 3 1
4 3 1 3 1

1 Total 10 3 11 1
2 1 1 1 4 .37

2 1 1 4 .37
3 1 4 .37
4 2 5 .45

2 Total 5 2 17 .01
3 1 1 1 4 .37

2 1 1 4 .37
3 1 4 .12
4 1 2 4 .37

3 Total 3 5 16 .01
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Table 5.9 Frequencies and statistics of the sign comparisons of given VS expected number of
completely incorrect answers, for each interval, for each group.

Count Completely Incorrect Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 1 1 3 2 1
2 2 3 1 1
3 3 2 1
4 3 1 3 1

1 Total 9 7 8 1
2 1 2 3 1 1

2 2 3 1 1
3 3 2 1
4 5 2 .45

2 Total 12 6 6 .23
3 1 4 1 1 .37

2 4 2 .68
3 4 1 .37
4 4 3 1

3 Total 16 1 7 .09

Table  5.10 Frequencies and statistics of the sign comparisons of given VS expected number of
correct answers, for each interval, for each group.

Count Correct Binomial P
Interval Group Giv<Exp Giv=Exp Giv>Exp

1 1 2 2 2 1
2 2 2 2 1
3 3 2 1
4 3 2 2 1

1 Total 10 6 8 .81
2 1 1 3 2 1

2 2 3 1 1
3 2 3 1
4 5 2 .45

2 Total 10 6 8 .81
3 1 2 4 .68

2 2 4 .68
3 1 4 .37
4 2 1 4 .68

3 Total 7 1 16 .09

As shown in the 5.8, 5.9 and 5.10, the comparisons between given and expected number

of answers are similar for each group. Because the size of each group was too small to
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give significant results separately, and there was no reason to keep them separate, a joint

analysis was performed (the results are the totals in 5.8, 5.9 and 5.10).

Figure 5.5 Sums of the sign comparisons of given VS expected number of answers for each region of
the contingency table, for each interval, joint analysis.

Sum = count (given > expected) - count (given < expected)

As shown by  5.8,  5.9,  5.10 and  Figure 5.5, the sign tests between given and expected

number of answers confirm the results of the first experiment:

• In the first interval (0 - 0.333) there are no significant results. The number of given

answers in each region of the contingency table (Figure 5.4) are not statistically

different from what randomly expected.

• In the second interval (0.333 - 0.666) the incorrect analogical answers occurred

more often than expected. Both the completely wrong answers and the correct

answers are not different from what randomly expected.

131



• In the third interval (0.666 - 1) the incorrect analogical answers occurred more

often than expected. Both the completely wrong answers and the correct answers

are not different from what randomly expected.

The pattern that emerges confirms the learning dynamics already emerged in the first and

second  experiment. These learning dynamics have a middle period of "partial learning"

for the categories which have similar criteria (it is worth to remember that this analysis

was performed only for people who found the analogical criteria). In fact, the mistakes

across similar categories occur more frequently than would be expected if these mistakes

were random, while the mistakes across dissimilar categories (i.e. between different kinds

of categories) are not different from what would be expected if these errors were random. 

This result confirms  the prediction that before learning is complete, any errors in

categorisation are not random but they are more frequent across similar categories. In

turn, this confirms the hypothesis that analogical reasoning starts to operate from the very

beginning of learning, and helps finding similarities even between categories which are

only partially learned.

5.3.5. Use of the previous exemplars

As in  the  previous  experiment,  the  participants  could  go  back  to  check  the  previous

exemplars.  So a  measure of  the use of  the previous exemplars  during learning is  the

number of clicks done after answering, before any learning has occurred.

In  this  experiment,  the  Pearson  correlation  with  the  difficulty  wasn't  significant

(correlation with number of exemplars: r = - .211 p > .05; with time: r = .148 p > .05 ).
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One explanation is that, since this task was easier and had only four categories, there was

less of a need to check the previous exemplars in order to succeed in the task.

5.4. Summary

This third experiment confirms the results of the previous ones, and allows generalization

from the previous results to cases in which the similar criteria are not defined by music.

As in the previous experiment, this experiment showed that for people it is easier to find

structurally similar categorization criteria or structurally dissimilar ones,  when given a

choice; the learning of similar categories is related; a phase of partial learning precedes

the discovery of the final categories.

5.5. General conclusions about the experiments

A clear and novel view of the use of analogical reasoning in category learning emerges

from the results of the three experiments. Not only are the similarities within a category

(i.e. between the exemplars of the same category) exploited, as already shown in other

works, but the similarities between different categories are exploited too. This confirms

the  first  hypothesis  of  this  work:  analogy  can  be  established  between

simultaneously-learned  categories  with  similar  structures,  to  aid  the  learning  of  both

categories.

When given the choice to find structurally similar categorization criteria or structurally

dissimilar ones, for people it is easier to find similar criteria, confirming a strong bias

toward the use of similarities. This is not surprising, considering the economy of such a
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choice,  both  in  computational  and  memory  terms,  and  further  supports  the  first

hypothesis.

But  what  is  more  interesting,  is  that  structural  similarities  are  exploited  even  before

complete learning of one category occurs, and that there is a form of partial learning,

hinting  that  some  process  different  from structure  mapping  also  produces  a  form of

analogical  reasoning.  This confirms the hypothesis 2b: learning consists  of two phases

where partial categories are first formed and then refined to create the final categories.  

Although the existing theories and models of analogical reasoning in category learning

could be adapted to explain these results, the existence of this partial learning opens the

way to a new theory and a new model, based on the formation of partial hypotheses and

their  subsequent  refinement.  In  other  terms,  this  would mean that  people don't  create

solutions  which  are  immediately  correct,  but  instead  they  reason  in  steps,  generating

partial solutions and modifying them, and that this simple mechanism can account for the

emergence  of  analogical  reasoning.  It  is  interesting,  at  this  point,  to  explore  this

opportunity and build such a model, which is what will be done in the next chapter.
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Chapter 6

A computational model

6.1. Introduction

From the presented experiments, some empirical results can be summarized:

• For people, the learning of one category is temporally related to the learning of

other categories with similar relational structures;

• Categories with similar relational structures are not learned individually, but in a

single process;

• The final learning of similar categories is preceded by a phase of partial learning;

• Direct comparison of exemplars from both similar and/or dissimilar categories

does not help or hinder learning;

• When given an alternative, people tend to learn similar criteria (for different

categories) than to learn dissimilar criteria;

• In a task with relational categories, participants often form hypotheses for

categorization rules and test those hypotheses in order to reject or refine them;

All of these results are in agreement with the initial hypotheses that:
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• Analogy  can  be  established  between  simultaneously-learned  categories  with

similar structures, to aid the learning of both categories.

2b. Learning consists of two phases where partial categories are first formed and then

refined to create the final categories. 

The results of the experiments showed that people tend to learn various categories

simultaneously (without using structural mapping), and that this process is usually split in

two phases (partial learning, then refinement). Therefore, a test should be done in order to

verify if a model based upon these assumptions can predict participants’  results. This is

precisely why this proposed new model has been developed. Although it is not based on

the existing theories and models of category learning and analogical reasoning, this model

is not incompatible with them, but on the contrary it can well complement the existing

ones. 

The criteria used to develop it, in addition to the need to explain the said results, are to

maximize its simplicity. The ideas which form this model can be generalized to other

domains of learning and reasoning. In order to do so, more experiments could be needed,

and this would be outside the current scope. This model could help expand our knowledge

of human reasoning by complementing the explanation of a large class of phenomena in

learning.

The idea at the core of the model is that people don't arrive immediately at a final solution

in category learning, instead they form partial hypotheses and then refine them in

subsequent steps. If two (or more) categories have similarities between them, the final
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classification criteria can stem from the same partial hypothesis. In other words, learning

of similar categories is a single process, in which various partial hypotheses are formed,

tested and then refined. This could complement the standard explanations of the kind of

analogical reasoning used by people when learning novel categories with structural

similarities.

What is tested is therefore the heuristic of "form and test partial hypotheses and refine and

re-use them". This chapter will show that the results in the experiments are easily

explained by this single heuristic. In future works, this heuristic could also be integrated in

other analogical learning models to form a more complete and powerful model of

analogical reasoning.

6.2. Standard explanations of the experimental results

According to the standard category learning theory (Rosch, 1978), categories are defined

by a set of common attributes. On the nature of those attributes, Rosch didn't limit them

to the perceptual ones, although she started from them for reasons of simplicity. But since

then almost all the categorization theories use the notion of attributes in the restricted and

"dimensional" sense of perceptual attributes (Kittur, Hummel, & Holyoak, 2004),

completely neglecting relations. These perceptual attributes are something that can be

present or not (not necessarily in a binary form, although many models assume such

further simplification), and the structure of the category definition is generally "flat": it

can't account for relations between attributes. Even in studies inspired on analogical

reasoning, such as the SEQL model (Kuehne et al., 2000), the definition of categories is

based solely on the presence or absence of some attributes.
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In more recent years, it has been proposed that categories can be defined by relations (e.g.

Barsalou, 1983; Gentner & Kurtz, 2005; Kittur et al., 2004; Murphy & Medin, 1985;

Rips, 1989; Ross & Spalding, 1994) and that models of categorization should use schemas

and rules to discover these kind of categories. Some work has already been done (Gasser

& Colunga, 2001; C. Preisach, S. Rendle, & L. Schmidt-Thieme, 2008; S Rendle, C

Preisach, & L Schmidt-Thieme, 2009), which focuses on the extraction of the relations.

Although these works use different methods, they share the use of intersection discovery,

in which a schema is learned from examples by keeping what the examples have in

common and discarding details on which they differ (as proposed by Hummel & Holyoak,

2003; see also Doumas, Hummel, & Sandhofer, 2008). 

In the existing models, the learning of each category is a separate process. These models

could be extended with the proposed heuristic in order to account for the help provided by

similarities between different categories which are simultaneously learned.

Also machine learning systems, and in particular inductive logic programming (Lavrac &

Dzeroski, 1994; Muggleton, 1991) use relational rules (in the form of logic predicates) to

discover the common structure of presented exemplars. This  approach is  clearly  very

generic.  In  fact  predicates can be of any kind, they can represent all the possible

expressible rules, and they can vary in their complexity, thus accounting for simple or

complex structures. One limit of these systems is that they are created to be powerful on

computers and not to reproduce human learning. Another limit, as for other models, is

that the learning of each category is a separate process.
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6.2.1. Brief description of the existing models

The  model proposed  in  this  thesis,  based  on  the  heuristic  of  "form and  test  partial

hypotheses and refine and re-use them", is not incompatible with the existing theories and

models of category learning and analogical reasoning. Instead, they  can well be

complemented by this heuristic to create more powerful and complete models of human

analogical learning. This model could complement the existing models in predicting the

results of the presented experiments, because it accounts for the facilitation resulting from

the simultaneous learning of similar categories. The next paragraphs will summarize the

most important existing models which could solve the tasks of the experiments, and will

show that they could benefit from being extended with the proposed heuristic.

6.2.1.1. SEQL

The SEQL model (Kuehne et al., 2000) is perhaps the model that more resembles the one

proposed in this thesis. When presented with a new exemplar, the SEQL model looks in

memory for a similar generalization or a similar exemplar. For example, for experiment 1

(an analogous discourse can be done for the other two experiments), a first exemplar of

category A could be composed by 2 blue circles, 2 red circles and 3 green squares. Having

no previous exemplar or generalization in memory, SEQL stores it. A second exemplar of

category A could be composed by 2 blue circles, 2 red circles and 4 yellow crosses. SEQL

notices the similarity with the first exemplar and creates the generalization "2 blue circles

and 2 red circles". 

The base version of SEQL model then finds many distinct categories (e.g. one for "2 blue

circles and 2 red circles", another for "3 blue circles and 3 red circles", another for "2 blue
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circles and 4 red circles", and so on) and eventually settles on a single very inclusive

category "presence of blue and red circles". A SEQL model extended with the right

relational predicates (e.g. "same/different number of elements with the same shape and

different colour") would succeed in correctly classifying the exemplars. But a SEQL

model extended also with the proposed heuristic of "form and test partial hypotheses and

refine and re-use them [for other categories]" would become more powerful and more able

to reproduce the results from the experiments. In fact the basilar SEQL model finds each

category separately, thus it does not reproduce the temporally relation of the learning of

similar categories, nor the participants' error patterns.

6.2.1.2. Dora

The functioning of the Dora model (Doumas & Hummel, 2005; Doumas et al., 2008) is

very complex, and will be summarized here only in its essentials. It is a connectionist

model at the base of which are (sub)semantic units. Each object is represented by the

simultaneous firing of a collection of these units. When two objects are simultaneously

presented to the model, it creates a new predicate unit based on the semantic units which

pertain to both objects. It has also a "comparator" to notice the simultaneous activation of

predicates describing values along the same metric dimension (e.g. size, colour, etc.). In

this case, it creates a new predicate with a relation (e.g. "bigger than") between the two

objects. In summary, it can learn new relations and can also learn how to classify

exemplars through the intersection of their features.

Given these features, Dora succeeds in correctly classifying the exemplars of the

experiments. But the learning of the similar categories is unrelated, thus Dora doesn't
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reproduce any of the results found for the real participants. In fact it learns all the

categories separately, therefore the learning times are randomly disposed, as well as the

patterns of error before learning (i.e. no partial learning). The similarities between the

categories are therefore of no help to Dora, as they are in contrast for people. Dora also

could be extended with the proposed heuristic, to become more powerful and more able to

reproduce the results from the experiments.

6.2.1.3. Other models

Regarding the models based on the extraction of relations (Gasser & Colunga, 2001; C.

Preisach et al., 2008; S Rendle et al., 2009), they also have the limitation of finding each

rule independently. Even if one extends them with the standard theories of analogical

reasoning (based on structural alignment and transfer of knowledge) not all of the results

would be reproduced. A model constructed in this way would first find the rule for one

final category, and then would use structure mapping to find the other category. The

presence of the initial partial learning would remain unexplained. This is also the case for

inductive logic programming (Lavrac & Dzeroski, 1994; Muggleton, 1991), which would

find each category independently. If extended with the proposed heuristic, also these

models could become able to reproduce the results from the experiments.

6.2.1.4. Summary

To summarize, this proposed new heuristic is not incompatible with the existing models of

category learning and analogical reasoning, although it is not based on the existing

theories. Instead, it is based on the assumptions that people tend to learn various
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categories simultaneously (without necessarily using structural mapping), and that this

process is usually split in two phases (partial learning, then refinement). These

assumptions are in agreement with the results of the presented experiments. This new

heuristic could complement the existing models and theories in explaining a large class of

learning phenomena.

From this discussion it is clear that many of the existing models are already able to

correctly learn to classify the exemplars from the three experiments (i.e. to solve the

tasks). If extended with the proposed heuristic of "form and test partial hypotheses and

refine and re-use them" those models would also reproduce the partial learning

phenomena, and therefore all the results of the real participants.

Thus, while the separate learning of each category (independently from how good and

powerful is the model) cannot reproduce some of the found results, the addition of a

heuristic to make the learning a single process seems to be the key to give a complete

explanation.

At this point, it is reasonable to question if this single heuristic can, on its own, reproduce

all the results without the addition of any other model. This is exactly what this chapter

wants to test.

6.3. An additional heuristic

In order to have a relation between the learning of similar categories, and to reproduce the

experimental results, a model based on the proposed heuristic of "form and test partial
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hypotheses and refine and re-use them" should be proposed. That is, a model which can

change ideas, and which has a unified process of reasoning. 

It is a common experience to reason in steps: first to have a hypothesis, then to restrict it,

and then to widen it again, to include something, exclude something else, etc. And if

learning various things at the same time, to use all the available information from all of

those things. 

What I propose is exactly such a model which can create hypotheses and then modify

them, to create hypotheses also for other categories. It isn't necessary that the first

hypotheses are completely correct: they are retained even if they are only partially correct,

so that they can undergo a process of modification. As said, these changes can be in any

direction (both "general-to-specific" and "specific-to-general"), differently from some

other models. In this way partial learning can be obtained, and then subsequently refined

to form the final categories.

It is worth to mention that no assumption has been made on how the said modifications

are obtained or what is the form of the hypotheses made and refined. Any algorithm could

be used to modify the hypotheses, therefore this model will use the simplest and less

intelligent form of modification algorithm, that is random modifications. If the model is

able to work with this trivial algorithm, it is reasonable that it would only work better with

more intelligent modification algorithms, such those implemented in other analogical

reasoning models or other artificial intelligence models.
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For what concerns the form of the hypotheses to make and modify, given the results from

the experiments and the suggestions from the participants, in the proposed model the

hypotheses have the form of predicates. As demonstrated by inductive logic programming

(Lavrac & Dzeroski, 1994; Muggleton, 1991), predicates can represent any form of

classification criteria, from the trivial presence of a distinctive feature to very complex

relations. Predicates can be of any kind, and the model will be built to support any kind of

predicates. Anyway, the kinds of predicates which will be actually implemented for this

work are only those which could be imagined watching the exemplars of the three

experiments. For other kinds of categories and tasks, other predicates could be

implemented. The model could be even extended with other models able to find and

invent new predicates, like Dora (Doumas & Hummel, 2005; Doumas et al., 2008),

inductive logic programming (Lavrac & Dzeroski, 1994; Muggleton, 1991), or the models

for the extraction of relations (Gasser & Colunga, 2001; C. Preisach et al., 2008; S Rendle

et al., 2009). 

6.3.1. The Emergence of Analogical Reasoning

This simple mechanism can explain and reproduce the experimental results, and can even

give an emergent account of some forms of analogical reasoning. In addition to (and

integrated with) the existing models, it can give a more powerful and complete account of

analogical reasoning. Before going on, some examples can be useful to illustrate the

various possibilities.

The simplest case is just a variation of the standard theories of analogical reasoning. In

this case, the model first finds the correct rule for one of the similar categories (for
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example, for experiment 1, same number of blue and green circles). Then, using some

random changes to this rule, it creates some other similar rules, until after a few steps it

finds the correct rule for the other category (different number of blue and green circles).

Thus, using the modification process, things that have already worked are implicitly

reused, "lazily" trying to adapt them to other situations. This is analogical reasoning, but

no explicit mapping of knowledge has taken place.

A more interesting case is when some partial rule is found first: that is, a rule which can

be applied to two (or more) categories. In contrast to the former case, this one can also

explain the phenomenon of the initial partial learning. For example, for the experiment 1,

a partial rule for the similar categories could be "some relation between blue and green

circles". Although the correct criteria wouldn't yet be found, such a rule would limit the

range of possible mistakes. This is exactly what happens during the experiments. After

this initial stage of partial learning, the model tries to modify this rule until after a few

steps it finds the two final rules, which are similar, for they descend from a common

ancestor. As for the former case, no explicit mapping has taken place, but the process can

be described as analogical reasoning.

6.3.2. Satisficing Problem Solver

In many aspects the proposed model is similar to a problem solver, specifically in the field

of inductive logic programming. It uses relational predicates to represent hypotheses. It

follows a path of deductions, using some heuristics to branch and prune, until it finds a

solution.
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It is worth remarking that, while it is common for some problem solvers to reuse solutions

to problems previously solved, the present model is able to find partial solutions and reuse

them, for problems being solved. Obviously this approach gives an advantage only in the

case of the simultaneous solving of problems with similarities between them, which is

exactly the case investigated in this work. In this respect, for the class of problems being

studied, the present model can satisficingly integrate the existing machine learning with

the help of this additional heuristic.

6.4. Model architecture

6.4.1. Overview

The general structure and working of the model is very simple. It has a memory for

hypothesized rules, and another memory for discarded rules (so they won't be recreated).

Each rule consists of a predicate, a weight and a list of valid categories. The list of valid

categories is the first main difference from the existing models: rules can be partial or

final. Obviously, a rule that is valid for all of the categories or for none of them, is

discarded. But it is possible to form temporary "drafts" of rules, valid for more than one

category. These temporary rules will be subsequently refined through modification, which

is another salient characteristic of this model. In fact, one of the ways in which a rule can

be created is by randomly modifying an existing rule.

The model accounts for all the possible ways a rule can be created:

• it can be based on a shown exemplar, taking some of its properties or

hypothesizing a relational structure between them
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• it can be created randomly

• it can be created by modifying an existing rule

• it can be created by unifying (intersecting) two existing rules.

Therefore it can account for almost all kinds of strategies, such as experience, fantasy,

trial and error, and logic.

The use of each method, as well as other aspects of the model, is parameterized (as shown

below), so with different parameter values the model can reproduce the behaviour of

different kinds of participants. Anyway, the overall functioning of the model remains

always the same. The parameters can mimic the inclination of a participant to create more

often hypotheses based on seen exemplars instead of randomly, but the basic idea of

creating partial hypotheses which can be valid for more than one category is a constant.

The most interesting parameter, in this respect, is the use of the creation of new rules

modifying an existing rule's predicate. If for some participants it is found that the model

can reproduce their behaviour without using the modifying method, that would mean that

the proposed heuristic is not used by those participants.

A typical test would act very similarly to a human participant. For experiment 1, the

model is shown one exemplar, and is asked to give an answer, then it is given feedback by

being told the correct answer. For experiments 2 and 3, it is asked to give answers until

the correct one is found. In either cases, from the feedback it can learn about the correct

classification.
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6.4.1.1. Answering phase

The answering phase is quite simple. Starting from the rule with greatest weight (i.e. the

oldest one), the model seeks in memory a rule which has a predicate which is true for the

given exemplar. If no rule is found, a random answer is given. If a rule is found, it can be

final or partial (that is, valid for more than one category). In this second case the answer is

randomly chosen between the categories for which the rule is valid.

For experiments 2 and 3, since the model is asked again to give answers until it finds the

correct one, for the subsequent requests it also checks the answers already given for the

current exemplar. If the chosen answer has already been given, it goes on to the next one,

and if the current valid rule has no other answers, it continues with the next valid rule. If

no other valid rule is found, a random answer is given, chosen from the ones not already

given.

In a first phase, in which the rules are generic or wrong, the model is expected to give

wrong or random answers. Then, if it finds partial rules, it will make mistakes similar to

the ones of the participants, in their partial learning phase (i.e. giving answers inside the

partial-category). When eventually the correct rules are found, and the partial rules

deleted, it will always give the correct answer at the first attempt.

6.4.1.2. Learning phase

The learning phase is more complex, and consists of various steps.

The model starts recording, for each rule in memory, if its predicate is true for the current

exemplar. Each rule can be valid, not valid or unknown, for each category. It starts being
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unknown for all the categories, then, when an exemplar is true for its predicate, the rule is

marked as valid for the exemplar's category (unless it was previously marked as not valid

for that category). If the exemplar is false for the predicate, the rule is marked as not

valid, with a probability proportional to a parameter. The use of this parameter was

decided because this kind of counter-factual reasoning is not common, and many

participants probably wouldn't use it. Finally, if the predicate is true for the current

exemplar, but the rule is final for another category, the rule is removed. This is the

simplest form of counter-factual reasoning. If a rule says that an exemplar is surely of one

category, but it is of another category, the rule is clearly wrong.

A second step of the learning phase is to check if there are final rules for some categories.

If a final rule is found for a category, all the other partial rules are marked as not valid for

that category, so they won't produce confusion. Moreover, if more than one final rule

exists for a category, only the oldest is retained.

A third step consists of removing the useless rules, that is the rules which are valid for all

or none of the categories, or the rules which are partial but too old (according to a

parameter). The removed rules are placed in the memory for the bad rules, whose size is

controlled by a parameter.

For experiments 2 and 3, all of these recording steps are repeated also for some of the

previously seen exemplars, randomly chosen. For experiment 1 there is instead a "virtual

notepad" in which some of the previously seen exemplars are annotated, and then used for

these recording steps. In either case, the frequency of this "going back" is controlled by a

parameter.
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Finally, some new rules are created, by the methods previously explained (i.e. based on

the shown exemplar, randomly, by modifying an existing rule, or by unifying two existing

rules). If a rule is already in the memory for the bad rules, it isn't created again.

As a last step, if the memories exceed their maximum sizes (controlled by two

parameters), rules are randomly deleted from both memories (except for final rules in the

memory for good rules) until their sizes are as required.

6.4.2. Structure of the model

6.4.2.1. Kinds of predicates

What has been stated until now is very general, and could work with any kind of

predicate. And in fact the model is open in respect to which predicates are actually used.

A predicate is abstractly defined as something having two functions: "IsTrue" (referred to

an exemplar) and "ChangeRandom" (which returns a new predicate). Therefore, virtually

all kinds of predicates can be implemented; they must simply provide these functions.

In practice, only the kinds of predicates useful for the presented experiments are currently

implemented, but the model can be extended with other predicates. As said above, it can

be even merged with some other model of discovery of relational structures, to be able to

produce new predicates from scratch. But this is not the aim of my research; as said, my

interest is just to account for the phenomena found in the experiments.

Therefore the predicates currently implemented are: 
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• the presence (or absence) of a feature or a set of features

• abstract quantity (a lot/a few) of elements with a given feature

• similarity between groups of elements (same/difference colour, shape, number)

• causal interaction (clicking on some element[s] causes reaction[s] of some kind)

• intersection of two other predicates

The model contains a predicate factory which creates new predicates. If the factory is

asked to create a new predicate based on a given exemplar, the kind of predicate to create

is randomly chosen, and the created predicate will be valid for the given exemplar. If the

factory is asked to create a random predicate, not based on any exemplar, the kind of

predicate is randomly chosen, but the predicate is also randomly created.

The factory can also create an intersection predicate (i.e. the logical operation "AND"

between two predicates) based on two existing predicates.

A central feature of the model is the creation of a predicate modifying an existing

predicate. In that case, the existing predicate is directly asked to create a randomly

changed clone, using its function "ChangeRandom". As said above, better modification

algorithms could be implemented, but since the core of the theory is the usefulness of

modification in general, if the trivial random modification is found to be useful, any better

algorithm could only improve the performance.

151



As said, the important feature of the model is not the specific implementation of the

predicates (any implementation is good as long as exist predicates which can represent the

solutions to the tasks) but the ability to randomly modify a predicate to create a similar

predicate, and all the implemented predicates have this ability. 

6.4.2.2. Rules

Predicates are the central part of the classification criteria hypotheses, which for simplicity

in this model are called "rules". Thus each rule will contain its predicate, against which

each exemplar will be evaluated to know if the predicate is true or false for that shown

exemplar.  

The proposed heuristic states that hypotheses can also be partial, i.e. be valid for more

than one category. Therefore each rule will have an array of validity statuses, one for each

category of the task. When the rule is created, the validity for all the categories for that

rule is set to "unknown". Then the validity for the shown exemplar's category can be

updated during the learning phase. If the predicate is true for the shown exemplar, the

validity is set to "valid", if it isn't already set to "not valid". If the predicate is false for the

shown exemplar, the validity can be set to "invalid".

A rule is said to be "final" if it is valid for only one category and its weight (see below) is

greater than a given parameter (see the parameters paragraph). In that case, if an

exemplar of another category is found for which the predicate is true (i.e. the rule would

say that the exemplar is for sure of category A, but it is of category B), the rule is

discarded.
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A final attribute of the rules is their weight. It is increased by one, for each rule in

memory, every time a new exemplar is shown to the model (i.e. it says how long a rule

have existed). It is called "weight" instead of "age" because it has a role in the answering

phase. In fact the rules are ordered from the oldest to the newest, and then are tested in

this order. Therefore the oldest have greater weight because it is more probable that they

are chosen to give the answer.

Figure  6.1 Partial and final rules. A partial rule (1) is valid for more than one category (in the
example, A and B categories are green, i.e. valid, C is grey, i.e. unknown, D is red, i.e. not valid). A
final rule (2) is valid only for one category (in the example, A). All rules are composed by a predicate,
the weight and an array of valid/invalid/unknown categories.

6.4.2.3. Memories

The model has two distinct memories, one for good rules and another for bad rules. It is

designed this way because from the participants' reports it was clear that they tended to
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remember separately the rules which they felt "promising" and the rules they had

discarded. Moreover, while the participants consciously and actively remembered the

good rules, they recalled a bad rule only when they risked to create it again as a good

hypothesis. It was like a sentinel which was activated only in a specific case, to tell them

not to waste time again on a bad idea. This is also the function the memory for bad rules

has in the model. In this memory go the discarded rules, and when a predicate is

hypothesized, before becoming a rule it is searched in all the remembered bad rules. If the

same predicate was already created and discarded, the new one is automatically discarded.

These two memories are therefore only containers for rules, with their maximum sizes

decided by two parameters. If the good rules memory exceeds its maximum size, it is

resized by randomly removing rules, except those marked as final. It the bad rules memory

exceeds its maximum size, it resized by randomly removing rules. As said above, the good

rules memory is ordered from the oldest to the newest, so when searching for a predicate

true for a shown exemplar, the oldest rules are tested first.

6.4.3. Representation of the input

Also for exemplars the level of detail in the chosen implementation is quite abstract. 

For experiment 1, they are 3 groups of elements, each group represented by its colour,

shape and quantity. The spatial distribution has been ignored, since in the experiment the

elements were randomly distributed, and the participants reported that the lack of spatial

structure was clear from the very first exemplars.
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For example, an exemplar composed by 3 blue squares, 3 red squares and 2 green crosses

would be represented as an object composed by three groups:

[{shape: square, colour: blue, number: 3}, 
{shape: square, colour: red, number: 3}, 
{shape: cross, colour: green, number: 2}]

For experiments 2 and 3, each element of the exemplar is represented individually. In fact

in some cases each of them elicits different reactions, so in this respect it would be

impossible to group them. But an algorithm can also group them according to their shape

and colour, so the predicates can also work with groups of elements, in addition to the

single elements. Thus in this case too, only the relevant features (as reported by the

participants) are retained.

For example, for experiment 2, an exemplar of a Dual category, with one group of 5 green

squares which play music #3, a second group of 4 blue crosses which react all with the

same randomly chosen action at the same time (U1 criterion), a third group of 5 red

triangles (some of which are distractors), 1 yellow circle and 1 orange star, could be

described as follows:

{element#1: {
shape: blue, colour: cross, melody: null, loop: false, 
reactions: [{element: 1, action: 2}, 

{element: 6, action: 2},
{element: 9, action: 2},
{element: 5, action: 2}]},

element#2: {
shape: square, colour: green, melody: 3, loop: false, reactions: 
[]},

element#3: {
shape: square, colour: green, melody: 3, loop: false, reactions: 
[]},

element#4: {
shape: square, colour: green, melody: 3, loop: false, reactions: 
[]},

element#5: {
shape: blue, colour: cross, melody: null, loop: false, 
reactions: [{element: 1, action: 1}, 

{element: 6, action: 1},
{element: 9, action: 1},
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{element: 5, action: 1}]},
element#6: {

shape: blue, colour: cross, melody: null, loop: false, 
reactions: [{element: 1, action: 4}, 

{element: 6, action: 4},
{element: 9, action: 4},
{element: 5, action: 4}]},

element#7: {
shape: square, colour: green, melody: 3, loop: false, reactions: 
[]},

element#8: {
shape: square, colour: green, melody: 3, loop: false, reactions: 
[]},

element#9: {
shape: blue, colour: cross, melody: null, loop: false, 
reactions: [{element: 1, action: 6}, 

{element: 6, action: 6},
{element: 9, action: 6},
{element: 5, action: 6}]},

element#10: {
shape: triangle, colour: red, melody: 6, loop: false, 
reactions: [{element: 10, action: 3},
{element: 12, action: 9}]},

element#11: {
shape: triangle, colour: red, melody: null, loop: false, 
reactions: []},

element#12: {
shape: circle, colour: yellow, melody: null, loop: false, 
reactions: [{element: 14, action: 11}]},

element#13: {
shape: star, colour: orange, melody: 10E, loop: false, reactions:
[]},

element#14: {
shape: triangle, colour: red, melody: 5, loop: false, reactions: 
[]},

element#15: {
shape: triangle, colour: red, melody: null, loop: false, 
reactions: []},

element#16: {
shape: triangle, colour: red, melody: 10A, loop: false, 
reactions: [{element: 16, action: 10}]},

groups: [[1, 5, 6, 9], [2, 3, 4, 7, 8], 
[10, 11, 14, 15, 16]]

}

It can be disputed that these representations of the exemplars are no more than a set of

features, exactly as many other models. But I don't argue that single exemplars can be

represented by their features, only that some kind of categories are better described by

relations (or even better by predicates). The representation chosen has the level of detail

needed to solve the test without making things too complex: my interest is on the kind of

reasoning used, not on perception and the discovery of features.

The level of representation used in this model is based on the notes and debriefings of the

participants. From their insights it was clear that many perceptual attributes of the
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exemplars, like for example the spatial disposition of the elements in the first experiment,

were simply ignored, and that only the "logical" attributes were noted.

6.4.4. Summary of the parameters

The parameters used by the model can be grouped in three categories: use of creation

methods, available working memory and rationality. They are summarized in Table 6.1. 

Table 6.1: Parameters used by the model, with ranges used by the simulated annealing algorithm.

Min Max
Creation methods

CreateFromExemplar probability of using the creation of 
new predicates based on a shown 
exemplar

0 10

CreateModifying probability of using the creation of 
new predicates by modifying an 
existing one

0 10

CreateRandom probability of using the random 
creation of new predicates

0 10

CreateUnifying probability of using the creation of 
new predicates by unifying two 
existing ones

0 10

Memory
GoodMemSlots size of the memory for good rules 0 15
BadMemSlots size of the memory for bad rules 0 15
NotepadSlots only for experiment 1: size of the 

virtual notepad
0 50

GoingBackProb only for experiments 2 and 3: the 
probability of going back to learn 
from previous exemplars

0 100

Rationality
RecordCorrectProb probability of using counter-factual

reasoning in recording the 
goodness of a rule

0 100

PartialRuleLimit maximum age of a rule before it 
can be removed if partial or it is 
considered final if valid for only 
one category

1 40

PartialRuleRemoveProb probability of removing a partial 
rule when too old

0 100
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As explained in the following, in order to find the combination(s) of parameters which

best simulate the preferences and best mimic the inclinations of each participant, a

simulated annealing algorithm is used to vary the parameters. Each parameter can vary

between a range, which is shown in the table.

It is worth to notice that it is possible to completely disable the proposed heuristic by

setting to 0 the probability of using the creation of new predicates by modifying an

existing one (CreateModifying). While all the rest  of the model is only a simple

reproduction of the reasoning adopted by participants (and the parameters can vary this

reasoning to best adapt the model to the peculiar preferences and inclinations of each

participants), this single feature (the use of the modification of hypotheses) is the core of

our theory. Clearly, it was impossible to test this modification mechanism without a

structure in which to put it, and which could reproduce the functioning of the tests and the

reasoning of the participants. 

In addition to those parameters, some values (6.2) are computed about the effective use of

some features in each repetition of the test. The parameters give the model the probability

of using some creation method, or constraints on memory. But the actual use of these

features probably changes with different repetitions of the test, so it can be useful to know

how much each feature has been actually used.

When each repetition ends, for the final rules in memory it is counted how many have

been originally created from the shown exemplars, how many randomly and how many by
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unifying two other rules. It is also counted how many times a rule has been changed to

become the final rule, as a measure of the use of modification. 

Table 6.2: Computed effective use of model's features.

Creation methods

FromExemplarAvgUse Average use of creation from the shown exemplar

ModifyingAvgUse Average number of changes that final rules have 
undergone

FromRndAvgUse Average use of random creation

UnifyingAvgUse Average use of creation by intersection

Memory

GoodSlotsAvgUse Average use of memory for good rules

BadSlotsAvgUse Average use of memory for bad rules

6.4.5. Functioning of the model

The overall functioning of the model has been described in the overview. Here it will be

illustrated in a more algorithmic form. Since the three experiments have some differences,

in some aspects the functioning must be different for each experiment. When the

functioning differs between the experiments, the algorithm will be illustrated for each

experiment separately.

The model's core lies in the predicate's ability to be modified (block F - "Create new

rules") and in the rule's possibility to be final or partial (i.e. valid for more than one

category). All the remaining (which is the largest portion of the algorithm) is only a

structure to organize the predicates and make it possible to reproduce the tests as shown to

the participants. In other terms, the model must obviously be able to interact with the test
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in order to tell it the answers and get the feedback, and must be able to record the good

and bad rules and manage them in a memory. Although these clearly are computationally

complex tasks, they are not the important features.

Because the simulated annealing algorithm (see below) was used to find the

combination(s) of parameters which best mimic the inclinations of each participant, the

model received as input the same exemplars which had been shown to the participant, in

the same order. During the development, it was also tested with sets of newly created

exemplars to further validate its functioning.
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A1. Answering phase, experiment 1
1. get a new Exemplar
2. sort GoodMemory from greatest to lower weight
3. for each Rule in GoodMemory

3.1. if the Rule's Predicate is true for the Exemplar
3.1.1. give answer(random([Rule's Valid categories]))3

4. if no answer given
4.1. give answer(random([all categories]))

A2. Answering phase, experiments 2 and 3
1. get a new Exemplar
2. sort GoodMemory from greatest to lower weight
3. set PossibleAnswers = [all categories]
4. for each Rule in GoodMemory

4.1. if the Rule's Predicate is true for the Exemplar4

4.1.1. set RemAnswers = intersection(PossibleAnswers, [Rule's Valid 
categories])

4.1.1.1. if RemAnswers is not empty
4.1.1.1.1. give answer(random(RemAnswers))

5. if no answer given
5.1. give answer(random(PossibleAnswers))

6. get Feedback 
7. if Feedback is not correct

7.1. remove given answer from PossibleAnswers
7.2. repeat from 4

B. Record answer for shown Exemplar
1. get CorrectAnswer for the Exemplar
2. for each Rule in GoodMemory

2.1. if the Rule's Predicate is true for the Exemplar
2.1.1. if the Rule is final but Rule's Valid category is not the 

CorrectAnswer
2.1.1.1. move Rule from GoodMemory to BadMemory

2.1.2. if the Rule is Unknown for CorrectAnswer
2.1.2.1. set Rule Valid for CorrectAnswer

2.2. else
2.2.1. if random(0-100) < RecordCorrectProb

2.2.1.1. set Rule NotValid for CorrectAnswer

C1. Record answers from Notepad (experiment 1)
1. for each NpExemplar in Notepad

1.1. repeat block B for NpExemplar
2. add Exemplar to Notepad
3. while size(Notepad) > NotepadSlots

3.1. remove a random exemplar from Notepad

C2. Go back to record answers from previous exemplars (experiments 2 
and 3)
1. for each PrevExemplar in PreviousExemplars

1.1. if random(0-100) < GoingBackProb
1.1.1. repeat block B for PrevExemplar

2. add Exemplar to PreviousExemplars

D. Check definitive rules
1. for each RuleA in GoodMemory

1.1. if RuleA is final
1.1.1. for each RuleB in GoodMemory (except RuleA)

1.1.1.1. set RuleB NotValid for RuleA's Valid category

3  This includes the case of final rules. If the rule is final, it will obviously have only one valid category.
For the definition of "final rule" see the paragraph on rules.

4  If the predicate is a causal interaction, it can check the Exemplar also by virtually clicking on its
elements to see their reactions.
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E. Remove useless rules
1. for each Rule in GoodMemory

1.1. increment Rule's Weight by 1
1.2. if Rule is Valid for all categories or Rule is Valid for no 

category
1.2.1. move Rule from GoodMemory to BadMemory

1.3. if Rule is partial and Rule's Force > PartialRuleLimit and 
random(0-100) < PartialRuleRemoveProb

1.3.1. move Rule from GoodMemory to BadMemory

F. Create new rules
1. NewRules = []
2. add to NewRules #CreateFromExemplar new Rules with predicates created 

from shown Exemplar
3. add to NewRules #CreateModifying new Rules created randomly modifying 

predicates of rules randomly taken from GoodMemory
4. add to NewRules #CreateRandom new Rules with randomly created predicates
5. add to NewRules #CreateUnifying new Rules created unifying predicates of

two rules randomly taken from GoodMemory
6. shuffle NewRules
7. for each Rule in NewRules

7.1. if GoodMemory does not contain Rule and BadMemory does not contain 
Rule and Rule is true for shown Exemplar

7.1.1. set Rule Valid for Exemplar's category
7.1.2. add Rule to GoodMemory

G. Resize memories
1. while size(GoodMemory) > GoodMemSlots

1.1. remove a random rule from GoodMemory except final rules
2. while size(BadMemory) > BadMemSlots

2.1. remove a random rule from BadMemory

6.4.6. A typical session

A typical session would run as follows. When the first exemplars are shown, the model has

no rule in memory, so it answers randomly. From the given feedbacks, it creates some

rules with both the "From exemplar" and "Random" methods. With subsequent exemplars

it can test the created rules, to discover if they are valid for more than one category (i.e.

partial), or for none. It can also create new rules by modifying the ones already in

memory, and can test all the rules in memory against some previous exemplars. Because

the model considers one rule at a time, it does not use direct comparison of exemplars, as

discovered for the participants.

If some partial rule is too generic, the model can discover it is valid for all the categories

(i.e. useless), and delete it. At any rate, if a partial rule survives too long, its practical
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usefulness decreases, because the confusion it produces will exceed the little piece of

information it provided, so it will be deleted.

When the model has a partial rule in memory, if presented exemplars apply to that rule,

the model chooses randomly one of the categories of that rule. Thus the answers will be

no longer completely random, but they will follow a pattern similar to the partial learning

discovered in human participants.

At some point, a final rule will be discovered, or a partial rule for similar categories. From

one of those rules, with the modification method the model can "short-cut" the process of

discovering the other final rule (or both of the final rules). This will reproduce the

temporal relation of the learning of similar categories, and the tendency to discover

similar criteria when given an alternative.

When a final rule is discovered, all the partial rules are set as not valid for that category.

Thus, after a while, the partial rules will be marked as not valid for all the categories, and

deleted. At this point, the model will give always the correct answer and the test will end.

6.4.7. The simulated annealing

As mentioned above, there are various parameters used in this model, accounting for

various strategies and aspects of reasoning. Using a simple form of simulated annealing, it

is possible to find the set of parameters that best reproduces the answers of each

participant.
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This paragraph is an overview of the simulated annealing algorithm used to find the best

sets of parameters. It is worth noting that the simulated annealing is not a central part of

the model, and that any other algorithm could be used to find the sets of parameters which

accurately reproduce the participants' answers. Therefore the algorithm used will be

presented only in its outline.

For all the test sessions administered to the human participants, the details about the

composition of the exemplars had been recorded. Therefore it was possible to submit to

the model the same exemplars shown to the participants, in the same order. If the answers

given by the model reproduce those given by the participants, it can be said that the model

reliably mimics their behaviour, and thus probably their reasoning also.

Moreover, if the model gives the same set of answers to the same exemplars shown to a

participant, it also makes the same mistakes and learns the categories in the same order.

Thus, this implicitly confirms all the results (as well as the "form and test partial

hypotheses and refine and re-use them" heuristic) found for human participants in the

previous chapters.

In order to test the participants' answers reproduction accuracy, an agreement measure is

needed. For Experiment 1, the Cohen's Kappa (1960) was chosen. Since its distribution is

not stable when the quantity of exemplars changes (see Appendix B), a MonteCarlo

simulation was implemented to compute the significance of each case. 

For experiments 2 and 3 the participants must keep answering until they give the correct

response. But with multiple responses the standard version of Cohen's Kappa cannot be
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used. Two alternative measures have been tested (see Appendix C): a fuzzy version of

Kappa (Dou et al., 2007), and the average rank difference. Since they are equally sensitive

to the actual agreement (R = 0.955 and R = -0.953), and since they are highly correlated

(R = -0.986), the Fuzzy Kappa has been chosen, to be consistent with the measure

previously used.

In order to test only the learning phase, the interval of answers being compared ended at

the last learning point, thus not including all the following correct answers needed to finish

the test (which would have positively biased the agreement).

The simulated annealing algorithm used was very simple, and was based on the narrowing

of the space of solutions (i.e. the possible sets of model's parameters). For each

participant, 200 sets of parameters were initially created, randomly but homogeneously

covering all the space of solutions (see the parameters ranges in the parameters

paragraph). Each session was repeated 10 times for each set of parameters. Then a

two-phases annealing was used.

In both phases, for each participant the space of solutions was repeatedly narrowed by

selecting the best repetitions, and then creating 200 new sets of parameters inside the new

space of solutions, until no improvement could be achieved. At the end of the first phase

the cycle was repeated for the second phase. The difference between the two phases was

the criterion of selection of the best repetitions (with their associated sets of parameters).

In the first phase the criterion of selection of the best repetitions was to minimize the

difference, between the model and the participant, of the quantity of exemplars needed to
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solve the task. In the second phase the criterion was to maximize the agreement of the

answers given by the model with those given by the participant.

This two-phase simulated annealing was used to quicken the process. In fact it is pointless

to estimate the agreement of the answers if the quantity of exemplars needed to solve the

task differs too much between the model and the participant. Only when the space of

solutions is narrowed enough to reproduce the participant's performance, it is useful to

check the agreement to further narrow the space of solutions in order to find the

solution(s) which have the best stable agreement with the participant's answers. 

It is worth to restate that for each set of parameters, the participant's session is repeated

10 times, because the model has stochastic processes and therefore two repetitions are

never exactly the same. Both the comparison of quantity of exemplars and the agreement

of answers are computed as the average over all the 10 repetitions of the session.

Therefore, only the most stable (and not only best mimicking) sets of parameters are

selected to create new sets. For this reason, at the end of the simulated annealing process,

the selected set(s) of parameters, for each participant, are guaranteed to have the best

achievable stable agreement with the participant's answers.

6.5. Reproduction of Experiment 1 results

6.5.1. Model's fit

For 86% of the participants, the model was able to accurately reproduce (significance of

kappa < 0.05) the participants' answers. It also accurately reproduced the results of the

experiment. The sign tests of the learning intervals (see Chapter 3) are significant (p <
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0.01) and in the same direction as in the experiment. In other words, also for the model,

the learning of one category helps the learning of the other category with similar relational

structure.

The results are the same as in the experiment also for the sign tests of the given vs.

expected number of partially incorrect answers during learning (see Chapter 3). The

partially incorrect answers are more than expected (p < 0.01), meaning that also for the

model the final learning of similar categories is preceded by a phase of partial learning.

No difference was found between the Paired, Unpaired and Single groups, confirming that

direct comparison of exemplars from both similar and/or dissimilar categories does not

help or hinder learning.

6.5.2. Parameters values

Examining the averages of the parameter values found by the simulated annealing

algorithm, it is possible to assess if and how much each rule creation method is used by

the model (Table 6.3). 
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Table 6.3: Average values of creation methods as found by the simulated annealing algorithm,
experiment 1.

Parameter values represent the number of times each method is tried for each presented exemplar.
Use values represent the times each method is used to arrive to the final versions of the correct rules.

Mean
95% Confidence interval

MedianLower
Bound 

Upper Bound

Parameters

CreateFromExemplar 5.67 5.50 5.84 5.00 

CreateModifying 5.96 5.80 6.11 6.00

CreateRandom 4.09 3.90 4.28 3.00 

CreateUnifying 5.13 4.95 5.31 5.00 

Effective use

FromExemplarAvgUse 0.96 0.95 0.97 1.00 

ModifyingAvgUse 1.82 1.75 1.90 1.00 

FromRndAvgUse 0.0165 0.0121 0.0209 0.0000 

UnifyingAvgUse 0.0045 0.0040 0.0050 0.0000

It is clear that the modification of rules is effectively used: rules are changed an average of

1.82 times before becoming the final ones. This confirms that the proposed heuristic of

"form and test partial hypotheses and refine and re-use them" is effectively and largely

used.

It is not surprising that the creation based on the shown exemplars is used as the initial

source of rules almost all the times: the probability to find a good rule randomly is very

low, as well as the probability of finding a good rule by unifying two existing rules (at least

for the experimental tasks in this work).
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It is also interesting to study the effect of the parameters on the difficulty (measured in

number of exemplars needed to solve the test). The only significant correlations with the

difficulty are summarized in 6.4.

Table 6.4: Significant parameters correlations with difficulty for Experiment 1.

CreateRandom .167(**)

ModifyingAvgUse -.318(**)

NotepadSlots -.169(**)

RecordCorrectProb -.346(**)

**. Correlation is significant at the 0.01
level (2-tailed). 

The fact that the random creation of new rules is positively correlated with the difficulty

isn't surprising, since doing so would produce only confusion. 

It is reassuring the negative correlation between the difficulty and the effective use of

creation by modification. It means that the more the creation by modification is used the

easier is the task. This confirms that the proposed heuristic effectively helps learning. 

The negative correlation of the available notepad slots also confirms what found in the

experiments.

Finally, the fact that the use of counter-factual reasoning (RecordCorrectProb) helps

learning was expected. This confirms that for this kind of tasks, people need to reason by

trial and error, forming hypotheses and rejecting the wrong ones.
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In summary, the model meets all the requirements: it mimics people's answers, reproduces

the experiment's results and uses modification of rules as a heuristic to find the solution

more quickly. The results confirm all the hypotheses and predictions.

6.6. Reproduction of Experiment 2 and 3 Results

6.6.1. Model's fit

Given their similarities, Experiments 2 and 3 were reproduced and analysed together.

For these experiments the model was able to accurately reproduce (significance of fuzzy

kappa < 0.05) the behaviour of 79% of the participants. It also accurately reproduced the

results of the experiment. The sign test of the learning intervals is significant (p < 0.01)

and in the same direction as in the experiments. In other terms, also for the model, the

learning of one category helps the learning of another other category with similar

relational structure.

The results are the same as in the experiments also for the sign tests of the given vs.

expected number of partially incorrect answers during learning. They are more than

expected (p < 0.01), meaning that also for the model the final learning of similar

categories is preceded by a phase of partial learning.

As for preferring to learn similar criteria than learn dissimilar ones, the sign test of the

clicks on analogical and non-analogical elements gives the same result as in the
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experiments. The clicks5 on the analogical elements are significantly more than on

non-analogical elements (p < 0.01).

6.6.2. Parameters values

Examining the means of the parameters values found by the simulated annealing

algorithm, it is possible to assess if and how much each rule creation method is used by

the model (6.5). 

Table 6.5: Average values of creation methods as found by the simulated annealing algorithm,
experiments 2 and 3.

Parameters values represent the number of times each method is tried for each presented exemplar.
Use values represent the times each method is used to arrive to the final versions of the correct rules.

Mean
95% Confidence interval

MedianLower
Bound 

Upper
Bound

Parameters

CreateFromExemplar 6.12 6.01 6.24 6.00 

CreateModifying 6.36 6.26 6.47 7.00 

CreateRandom 4.80 4.67 4.93 5.00 

CreateUnifying 5.05 4.93 5.18 5.00 

Effective use

FromExemplarAvgUse 0.91 0.85 0.97 1.00 

ModifyingAvgUse 3.68 3.35 4.01 2.00 

FromRndAvgUse 0.0147 0.0117 0.0177 0.0000

UnifyingAvgUse 0.0041 0.0035 0.0047 0.0000

5 The model exactly reproduces the behaviour of a human participant, so for the analysis it is
undistinguishable. To discover the (possible) action associated to an element, the model has to "click" on
that element, and only then it is told what "happens", exactly as for human participants.
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It is clear also that for these experiments the modification of rules is effectively used; rules

are changed an average of 3.68 times before becoming the final ones. Like before, it is not

surprising that the creation based on the shown exemplars is used as the initial source of

rules almost all the time. Both the probability of finding a good rule randomly and the

probability of finding a good rule unifying other two, are very low.

It is also interesting to study the effect of the parameters on the difficulty (measured in

number of exemplars needed to solve the test). For these experiments the significant

correlations with the difficulty are more (6.6), also because of the greater number of

participants. 

Table 6.6: Significant parameters correlations with difficulty for Experiments 2 and 3.

CreateFromExemplar -.188(**)

CreateRandom .160(**)

ModifyingAvgUse -.087(**)

PosMemSlots -.152(**)

GoodSlotsAvgUse -.087(**)

GoingBackProb -.074(**)

RecordCorrectProb -.197(**)

PartialRuleLimit .402(**)

**. Correlation is significant at the 0.01
level (2-tailed). 

The new results (with respect to the repetition of the first experiment) are not surprising;

both the creation of new predicates based on a shown exemplar and the available memory

for good rules help learning. 
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The increasing difficulty level when the age limit for partial rules increases can be easily

explained by the fact that the more a person waits to remove a partial hypothesis, the

fewer are the opportunities to discover new good rules. The remaining results are the same

as for the previous experiment, a fact that confirms the stability of the model. The lower

correlations (in comparison with experiment 1) could be simply explained by the fact that

different kinds of predicates are used in these two other experiments. Although all the

predicates have the same functions, the actual implementations are different: thus it is not

surprising that for different classes of problems the sensitivity of the model is different.

The model meets all the requirements for these tests too: it mimics people's answers,

reproduces the experiment's results and uses the modification of rules as a heuristic to find

the solution more quickly.

6.7. Testing constraints on the use of the heuristic

In order to test if the proposed heuristic of "form and test partial hypotheses and refine

and re-use them" was effectively needed by the model to reproduce the participants'

results, the model was also tested with some features disabled.

A second run of the simulated annealing was performed with the CreateModifying

parameter fixed to the value of zero. This completely disabled the possibility of the model

to re-use hypotheses. In this condition, the model was able to accurately reproduce the

answers for only the 40% of the participants for Experiment 1, and the 38% for

Experiments 2 and 3.
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A third run was performed without the possibility to have partial rules. A rule could be

valid for only one category or for none (which is the standard account of categorization).

In this condition, the model was able to accurately reproduce the answers for only the 36%

of the participants for Experiment 1, and the 37% for Experiments 2 and 3.

From these results it is clear that the model of reasoning, in itself, is able to solve the

learning task mimicking some of the participants' behaviours, but the proposed heuristic

is the keystone.

6.8. Summary

The proposed new heuristic of "form and test partial hypotheses and refine and re-use

them" has been implemented and tested in this model. Obviously, the model had to

include ways to interact with the tasks, to manage the memory, to create hypotheses and

test them, etc. Therefore it needed also parameters to fine-tune its behaviour to best match

the kind of reasoning and preferences of each participant. And in order to find the set of

parameter which allowed the model to best mimic the participant's behaviour, a simulated

annealing algorithm was used.

The model, with at the core the ability to create partial hypotheses and modify them, was

able to accurately reproduce the answers of 81% of participants. Without this ability, it

was able to accurately reproduce the answers of less than 40% of participants. Which

means that the fine-tuning, alone, wasn't sufficient, and that the proposed heuristic was

crucial to account for all the phenomena discovered in the three experiments.
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The analysis of the sets of parameters which best reproduced the participants' answers

showed incontrovertibly that the modification of the hypotheses was largely used.

These results clearly indicate that the experimental findings of the three experiments can

be explained by the theory implemented in this model. The computational model, in order

to accurately reproduce the participants' answers, needed the proposed heuristic. It can be

thus inferred that the participants effectively used that heuristic. 

More in general, it can be inferred that, when categories with structural similarities

between them are simultaneously learned, partial hypotheses are formed and then refined

and re-used. In addition, since this model didn't use structure mapping (to create, to

modify or to test hypotheses, or in any other form), this demonstrates that an analogical

reasoning process emerges anyway from the use of the proposed heuristic without the

need of structure mapping. This is also consistent with the findings of Experiment 1,

which hinted that structure mapping didn't have a role in the learning process.

Because this model used random modification of rules, it is surely the most general case,

and any better algorithm of modification could be included to further improve the model's

performance.

This is also true for the kinds of predicates. The proposed model included only the

predicates which could be effectively used to represent classification hypotheses on the

exemplars of the three experiments. But the model is open to any other kind of predicate,

and can be extended with algorithms for the generation ex-novo of new kinds of
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predicates. The only constraint on predicates is that they must be randomly modifiable to

create new predicates with the modification method.

In summary, the proposed implementation of the heuristic of "form and test partial

hypotheses and refine and re-use them" can accurately mimic the participants' behaviour

and reproduce all the results of the three experiments: learning of similar categories is

related, similar categories are learned in a single process, final learning is preceded by a

phase of partial learning, direct comparison of exemplars is not used, people prefer

similar criteria over easily discernible ones, and people form hypotheses and test those

hypotheses in order to reject or refine them.

As said in the introduction, these findings are not in contrast with other models of

analogical reasoning or category learning, which could be complemented by the proposed

heuristic. The ideas which form this model can be generalized to other domains of

learning and reasoning. In order to do so, more experiments could be needed, and this

would be outside the current scope. This model could help expand our knowledge of

human reasoning by complementing the explanation of a large class of phenomena in

learning.
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Chapter 7

Conclusions

This work describes a model of analogical reasoning that diverges from all those which

have been produced so far.

The standard models of analogical reasoning (e.g. Gentner, 1981; Gentner, 1983; Holyoak

& Koh, 1985) allow the  common structure between two domains to be exploited. One

structure is methodically mapped onto the other, in order to find the exemplars in the

target  which  correspond  to  the  roles  inferred  from  the  base  domain.  These  models

therefore  can't  predict  what  happens  when  analogy  occurs  between  two  partially

understood domains.

The simultaneous learning of categories with similar structures is an aspect of analogical

reasoning which has never been explicitly studied in more than twenty years of the study

of analogical reasoning. For decades the attention has been focused on the  similarities

between exemplars of the same category (“within category” similarities), and on analogy

between structures, at least one of which is assumed to be complete. Consequently all the

models  that  have  been  based  on  this  assumption  dealt  with  high  level  problems  like

mapping,  concept  alignment,  and  their  computational  complexity.  These  kinds  of

problems are central for that kind of analogical reasoning, but they become immediately

superfluous  when  one  considers  that  in  human  learning  analogical  reasoning  isn't

necessarily of that type: analogy between complete structures is instead a rare case. 
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On the contrary, in order to fill this gap, this thesis intended to investigate the case of

similarities  between  different  categories,  all  learned  simultaneously.  It seemed  much

important  to  lead the studies  on analogical  reasoning toward the investigation of how

analogy happens when simultaneously-learning various similar concepts. This is in fact a

more  general  phenomenon,  which  happens  more  frequently  than the  analogy  between

completed structures. It is even more important to stress the importance of this aspect,

considering that for decades it has been overlooked, while focusing on studies that can be

applied only to a few cases of human reasoning.

Another essential problem that all research in the area of cognitive science must take into

account is time and memory constraints. These constraints have a big impact on analogical

reasoning and generally on human learning. Even so, the approaches that dominated the

study of analogical reasoning haven't yet devised a satisfying solution to the problem. 

The proposed heuristic of "form and test partial hypotheses and refine and re-use them",

at the core of the proposed model, can maximize the amount of extracted information,

thus minimizing the memory and time efforts. 

It is because of the limits imposed by memory and time, that the human mind chooses to

resort to analogy to learn unknown concepts. Our mind does so also when simultaneously

learning unknown concepts, as already suggested by some studies (e.g. Keane, 1995) and

further shown by the results of my model.

Another  aspect  overlooked  by  current  research  on  analogy  is  the  contiguity  between

analogical reasoning and scientific thinking. Although research on analogy started from
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this aspect, in recent years it has been abandoned. My study rediscovers this link, for my

model highlights  that  human learning proceeds through the formulation of  a series of

hypotheses that are tested and accepted, rejected or partially modified, with a process very

similar  to  scientific  reasoning.  As said,  this  aspect  was  central  in  the  first  studies  on

analogical  reasoning  (Clement,  1981;  Del  Re,  2000;  Hoffman,  1980;  Oppenheimer,

1956),  but  the subsequent  developments  progressively  diverted the  attention from this

interesting problem, whose investigation potentiality seemed already exhausted a few years

ago. In the light of the new implications which have emerged from this study, it is of great

importance for the future development of cognitive science to return to investigate the link

between analogy and scientific thinking, with new models based on the process of partial

learning and subsequent refinement as proposed in the present work.

7.1. Future work

Given the salience of the discoveries presented in this work for the future development of

cognitive  science,  some  suggestions  arise  about  what  needs  to  be  studied.  They  are

presented here only briefly, since they directly descend from the discussion above.

The idea that simultaneous learning of similar concepts is in reality a single process could

be further expanded, as well as the idea that analogy can emerge from modification of a

concept. This last idea is related to Keane's proposal of incremental analogy (1995; 1994)

which could be expanded to form a new framework of analogy-making which doesn't

need explicit mapping.

179



Other interesting work could be done on the early use of analogy, in the cases in which

there isn't enough time or there aren't enough resources to learn concepts separately and

then use structure mapping.

It could be interesting, for example, to investigate, in the light of the present study, the use

of analogy in irony, in idiomatic expressions, in insults, and even in dreams.

In summary, this present work opens a new field of research on analogy and category

learning,  and  proposes  that  analogy  can  also  be  an  emergent  ability.  Analogy  is  not

necessarily used explicitly, and it can emerge from a heuristic of "form and test partial

hypotheses and refine and re-use them".
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Appendix A

Statistical distributions of interval 

averages and differences

The analysis  of  learning  intervals,  as  proposed for  the  three  experiments,  creates  the

problem of  analysing  their  distribution,  and  the  distribution  of  their  differences.  The

analysis can be summarized as follows. Having 3 or 4 points in time (A, B, C and D), in

random order, how is the probability of the following differences distributed?

• Experiment 1:

d=AB −
(AB+ AC+ AD+ BC+ BD+ CD )

6 (A.1)

or equivalently: 

d=CD −
(AB+ AC+ AD+ BC+ BD+ CD )

6
 

(A.2)

• Experiment 2:

d=
(AB+ AC+ BC)

3
−

(AB+ AC+ AD+ BC+ BD+ CD)

6
 

(A.3)

• Experiment 3:

d=AB −
(AB+ AC+ BC)

3
 

(A.4)

A MonteCarlo simulation was performed, assigning random values to the points, and then

normalizing them so that the smallest number was 0 and the highest was 1 (this step was
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needed so the various repetitions could be compared). The computation of the intervals

and their differences was repeated 1e+6 times, and the statistical distribution recorded.

Figure A.1: Distributions of Intervals and Differences for Experiment 1.

Figure A.2: Distributions of Intervals and Differences for Experiment 2.
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Figure A.3: Distributions of Intervals and Differences for Experiment 3.

It is evident from Figures A.1, A.2 and A.3 that the distributions don't approximate to a

Gaussian curve.  Therefore they cannot  be analysed using parametric  statistics like the

Student's t-test.

Anyway it is possible to use a non parametric test like the binomial test, to compare the

times the differences  are positive to the times they are negative.  In fact,  knowing the

expected  distributions  of  negative  and  positive  differences  of  random points,  the  null

hypothesis is that the real distributions are not different from random.

It  can be argued that  the distributions would change without the normalization of the

points to fit the interval [0-1]. Although this is true, it can be easily demonstrated that the

proportion of negative and positive differences is independent of any linear transformation

of the points' coordinates. Therefore, even without normalization, the binomial test can be

safely used.
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Appendix B

Significance of Cohen's Kappa

The most used measure of inter-rater agreement for qualitative items is Kappa, proposed

by Cohen in 1960. Differently from simple percent agreement, Kappa takes into account

the agreement occurring by chance. It is computed with the formula: 

k=
P a −P e 
1−P e 

 (B.1)

where P(a) is the relative observed agreement among raters, and P(e) is the hypothetical

probability of chance agreement, using the observed data to calculate the probabilities of

each  observer  randomly choosing  each  category.  Theoretically,  Kappa ranges  from -1

(complete disagreement) to 1 (complete agreement). In reality, the actual possible range

of values is a function of the number of items being rated and the number of categories.

Notwithstanding this, Landis and Koch (1977) proposed the following (arbitrary) table to

interpret Kappa values:
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Table B.1: Landis and Koch (1977) proposed interpretations of Kappa values

Kappa statistic Strength of agreement

< 0.0 Poor

0.0 - 0.2 Slight

0.2 - 0.4 Fair

0.4 - 0.6 Moderate

0.6 - 0.8 Substantial

0.8 - 1.0 Almost perfect

Instead, as observed by Gwet (2001), the Cohen's Kappa (1960) distribution varies with

the number of categories and items. That is, the generally accepted values proposed by

Landis and Koch (1977) to assess its significance are arbitrary and can't be used in all

situations. 

Because the mathematical derivation of the distribution of Kappa is prohibitive, two other

approaches are generally used to evaluate its significance.

The  first  approach  is  to  assume,  based  on  the  central  limit  theorem,  that  Kappa

approximates  to  a  normal  distribution.  Various  methods  have  been  then  proposed  to

estimate the variance of a computed kappa.  With the variance and the assumption of

normal  distribution,  the  significance  is  then  calculated.  Unfortunately  this  approach  is

generally wrong. The approximations to a normal distribution holds (Gwet, 2001) only for

large (n > 30)  quantities  of  items and when the number  of  items is  greater  than the

number of categories (n > c), but usually this is not the case. 

The second approach for  the estimation of  the significance of  a given kappa is  using

MonteCarlo simulations. A large (n = 1e+5) number of kappas is computed using random

187



answers  to  a  given  number  of  items  between  a  given  number  of  categories.  The

distribution of these random computed kappas can then be used to assess the probability

that an observed kappa has occurred only by chance.

Using this method, it is also possible to estimate the  real variance of kappa for a given

number of items and categories. Moreover, with a chi-square test it is possible to assess

the goodness of the approximation to a normal distribution.

Figure B.1 shows the comparison of distributions of kappa, computed for 4 categories

(i.e. the case of Experiment 1) and for various numbers of items. For small numbers of

items the  distributions  poorly  approximate  a  normal  function.  Moreover,  the  variance

decreases with increasing numbers of items.

Figure B.1: Cohen's Kappa cumulative distributions for 4 categories and various numbers of items
(MonteCarlo simulation).
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In summary, the values proposed by Landis and Koch  (1977) are totally arbitrary, and

can't be used to assess the real significance of a computed kappa. Also the method based

on  the  approximation  to  a  normal  distribution  can't  be  used  for  small  sets  of  items.

Therefore, for this work the MonteCarlo method was chosen to estimate the significance

of the model's ability to reproduce the human behaviour.
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Appendix C

Measures of inter-rater agreement for 

multiple responses

The most used measure of inter-rater agreement is Cohen's Kappa, but in a case with

multiple responses for each item, clearly it cannot be used. Therefore two other measures

have been tested: a fuzzy version of Kappa, as proposed by Dou et al. (2007), and the

average rank difference.

C.1. Fuzzy Kappa

The Fuzzy Kappa is a generalization of Cohen's Kappa for fuzzy sets. Therefore, in a case

with four categories, a typical rating situation could be as follows:

Category A B C D Tot

Rater 1 0 0,2 0,2 0,6 1

Rater 2 0,4 0 0,2 0,5 1

Agreement 0 0 0,2 0,5 0,7

The agreement is computed for each category with an intersection function, which usually

is  the  minimum  function.  The  total  agreement  on  a  given  item  is  the  sum  of  the

agreements for each category:
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f F  x =∑
i=1

N

i
A x ∧i

B x   
(C.1)

where x is the item, A and B are the raters, and  i x  is the fuzzy value for category i.

The total agreement between the two raters is the sum of the agreements for each item:

P0
F=

1
M ∑

m=1

M

f F  x m=∑
m=1

M

∑
i=1

N

i
A x m∧i

B x m  
(C.2)

Dou et al. (2007) derive the expected random agreement as:

Pe
F=∑

i=1

N

∫
 i

A
=0

1

∫
i

B
=0

1

p i
A p i

B  i
A∧i

B d i
A d i

B

 

(C.3)

where p i is the probability of fuzzy value μ for category i.

The Fuzzy Kappa is then computed as the standard Kappa:

K F=
P 0

F−Pe
F

1−P e
F  (C.4)

The Fuzzy Kappa has  the same properties  as  the  standard Kappa.  Moreover,  for  the

special case in which one fuzzy value = 1 and all the others = 0 (that is, absolute certainty

on one classification), the Fuzzy Kappa will retrogress to a standard Kappa.

For  this  thesis,  an  algorithm  for  the  computation  of  the  Fuzzy  Kappa  has  been

implemented in C# (Figure C.1).

191



public class FuzzyKappa
{

private Dictionary<double, int>[] margAnsw1, margAnsw2;
private double answAgreement;
private int totItems, totCategories;

public FuzzyKappa(int totCategories)
{

this.margAnsw1 = new Dictionary<double, int>[totCategories];
this.margAnsw2 = new Dictionary<double, int>[totCategories];
this.answAgreement = totItems = 0;
this.totCategories = totCategories;

for (int i = 0; i < totCategories; i++)
{

margAnsw1[i] = new Dictionary<double, int>();
margAnsw2[i] = new Dictionary<double, int>();

}
}

public void AddClassification(double[] answ1, double[] answ2)
{

totItems++;

//for each category
for (int i = 0; i < totCategories; i++)
{

//increase the general agreement
answAgreement += Math.Min(answ1[i], answ2[i]);

//by default a Dictionary doesn't contain a value
if (!margAnsw1[i].ContainsKey(answ1[i])) 

margAnsw1[i][answ1[i]] = 0;
if (!margAnsw2[i].ContainsKey(answ2[i])) 

margAnsw2[i][answ2[i]] = 0;

//increase the probability of getting that fuzzy value 
//for that category
margAnsw1[i][answ1[i]]++;
margAnsw2[i][answ2[i]]++;

}
}

public double CalcFuzzyKappa()
{

if (totItems == 0) return 0;

//calculate the random agreement
double pe = 0;
for (int i = 0; i < totCategories; i++)

foreach (KeyValuePair<double, int> m1 in margAnsw1[i])
foreach (KeyValuePair<double, int> m2 in margAnsw2[i])

pe += m1.Value * m2.Value * Math.Min(m1.Key, m2.Key);

pe /= (double)totItems;

//in case of perfect agreement, avoid division by zero
if (totItems == pe) return 1;

return ((double)answAgreement - pe) / 
((double)totItems - pe);

}
}

Figure C.1: Code of the implementation in C# of Fuzzy Kappa
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C.1.1. Quantification of uncertainty

There  could  be  many  different  solutions  for  the  derivation  of  the  uncertainty  (and

therefore the fuzzy values) from the participants' answers. Take for example an item of

category A, to which a participant gave the answers B, C and finally A. Obviously, the

final answer must be the correct one (and no other answer can be given afterwards). But

the estimation of the participant's uncertainty changes, if the participant was answering

randomly, or was in doubt between A, B and C, or for example in the beginning he was

certain about B. As it is impossible to ascertain the participant's knowledge, a general

method must be decided.

The chosen method was the simplest one: give the same weight to each answer. So, in the

case above, both A, B and C would be given 0.333 as fuzzy values. This method creates a

bias  toward  agreement,  but  the  method (see  below)  chosen  for  the  estimation  of  the

significance takes this into account.

C.1.2. Sensitivity to disagreement

In order to assess the sensitivity of fuzzy kappa to different levels of disagreement,  a

simple method was used. Taking the real sets of answers in a participant's test session,

some of them were randomly replaced, and the new session with random replacements

was compared to the original one. Increasing the number of random replacements, the

kappa value is expected to decrease.
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The replacement method took into account the peculiarities of the test. That is, the final

answer  had  always  to  be  the  correct  one.  In  1 there  is  an  example  of  the  possible

replacements.

Table C.1: Examples of random replacement of answers

Item's category A B A C

Original answers B
A B

C
D
A

A
C

Random replaced answers
C
D
A

A
B A

B
C

Each participant's session was compared to randomly modified versions several times, for

various quantities of random replacements. The correlation between the fuzzy kappa and

the number of random replacement is R = -0.955, p< 0.01 (see Figure C.2). This measure

is therefore very sensitive to increasing levels of disagreement, and it is a good candidate

to test the model's ability to reproduce the participants' behaviour.
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Figure C.2: Correlation between Fuzzy Kappa and number of random replacements.

C.1.3. Significance

Since the distribution of the fuzzy kappa changes with different quantities of items (as the

standard  kappa),  a  method to  assess  the  significance  of  an obtained  value  is  needed.

Moreover, given the particular method used to quantify the fuzzy values from the given

answers, each session has its own distribution of kappa.

195



Figure C.3: A typical distribution of Fuzzy Kappa values for random answers

The method chosen to estimate the distribution of the fuzzy kappa for each session takes

into account the constraints deriving from the test. That is, each set of answers must end

with the right answer. Therefore the same replacement method as shown above was used

to randomly replace all the answers. Each session has been compared to 1e+5 new random

sessions,  and the  distribution  of  the  resulting  fuzzy  kappa values  has  been  computed

(Figure C.3 for one of the distributions). In this way, for each session it is possible to

estimate the significance of the agreement between the original answers and the model's

answers.

C.2. Average rank difference

Another  method  to  assess  the  inter-rater  agreement  (or  better  in  this  case  the

disagreement) in a case with multiple responses is the rank difference. The computation is

simple and depends on the order of the answers of both the raters.
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For example, if rater 1 answers (B, C, A), and rater 2 answers (B, A), the ranks will be

assigned as in 2. 

Table C.2: Computation of rank difference, based on order of answering

Ranks Total

Answers A B C D

Rater 1 B, C, A 3 1 2 4

Rater 2 B, A 2 1 3,5 3,5

Difference 1 0 1,5 0,5 3

The average of the rank differences of all the items is then a measure of the disagreement

between the two raters.

C.2.1. Sensitivity to disagreement

To assess the sensitivity of the average rank difference the same method of the fuzzy

kappa was used. The original sessions were compared to randomly modified copies, and

the number of answer replacements was the independent variable measuring the actual

level of disagreement.

As  for  fuzzy  kappa,  each  participant's  session  was  compared  to  randomly  modified

versions  several  times,  for  various  quantities  of  random replacements.  The correlation

between the average rank difference and the number of random replacement is R = 0.953,

p< 0.01 (see Figure C.4). Thus this measure is also very sensitive to increasing levels of

disagreement, and it is another good candidate to test the model's ability to reproduce the

participants' behaviour.
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Figure C.4: Correlation between average rank difference and number of random replacements

C.2.2. Significance

To estimate  the  significance  of  an  obtained  average  rank  difference  value,  a  method

similar to the fuzzy kappa was used. The same replacement method was used to randomly

replace all the answers. Each session was compared to 1e+5 new random sessions, and the

distribution of the resulting fuzzy kappa values was computed (Figure C.5 for one of the

distributions). In this way, for each session it is possible to estimate the significance of the

agreement between the original and the model's answers.
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Figure C.5: A typical distribution of average rank difference values for random answers

C.3. Correlation between fuzzy kappa and average rank 

difference

As a last proof that the two measures effectively quantify the same variable, they have

been compared using,  for their computation,  the same pairs of original  and randomly

modified sessions. The correlation between the obtained fuzzy kappas and average rank

differences  is  R = -0.986, p  < 0.01 (Figure C.6).  Thus they are essentially  the same

measure, and one of the two can be arbitrary chosen.
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Figure C.6: Correlation between average rank difference and fuzzy kappa
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Appendix D

Text of instructions for 

Experiment 2

A toy factory purchased a machine to produce interactive toys. The manager responsible

for the invention of these toys had designed the machine to produce 5 different types of

toys.  The  machine  was  not  working  correctly,  however,  which  meant  that  as  well  as

producing these 5 different types of toys it also produced random toys which didn’t work

and had to be discarded. Then, overnight, the manager changed his job and took with him

all the documentation for this project.

The factory has decided to hire an expert (i.e. you) to reconstruct the missing manager's

ideas. The machine in the meantime has produced a lot of toys of all 5 types, and many

toys which didn’t work. The factory owner has asked you to study these toys and learn to

identify which toys are of which type and which toys don’t work.

Your task is to learn to classify the toys you will be shown.  For each toy you will have

to guess which type of toy it is, and the old manager (at great trouble to the factory) will

be called to tell  you if you guessed right or not.  If you guess wrong, you must try

guessing another type until you find the correct answer. In the beginning you will

have no idea of the type of any toy and you will have to choose randomly, but slowly

you will learn how to classify the toys. Every mistake you make will be considered a
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cost by the factory, and your target is to learn to classify the toys with as few mistakes

as possible.

You will be shown four toys a time, chosen completely at random, and when you have

labelled them all correctly, an arrow button will appear allowing you to go on to the next

four toys. At any time you can go back to look at the toys already labelled, by clicking on

a "back" arrow. You will be able to go back and forth any time you want without losing

the work you have already done. This will allow you to look again at previously identified

toys and then return to the ones to be labelled. You won't be allowed to take notes with

pen and paper.

When you will have learned to correctly classify all the toys (i.e. when you can correctly

label them at your first guess), the computer will tell you that your task is completed. You

will then have to write a brief report to teach a worker how to identify the different types

of toys. This worker will then go on with the boring labelling job.

A brief tutorial will  now teach you how the task works. Please follow all  the steps to

practice with  the toys and the labels that  are used to identify them. Now close these

instructions to start the tutorial. You can reopen these instructions at any time.
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