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Abstract

This work describes a model of analogical reasoning that diverges from all the 
“standard” models of analogical reasoning produced so far. The “standard” models are 
focused on the analogy between completed structures, while the model described here 
is focused on experiments where novel similar concepts are learned simultaneously, 
not necessarily starting from a well-known domain as a source of knowledge. The 
starting hypothesis is that analogy can be used between simultaneously learned 
categories. A subsequent hypothesis is that learning is usually split in two phases: 
some general "partial-categories" are formed first, which are then modified to arrive 
at the final categories. This model confirms the predictions originating from these 
hypotheses: 1. learning of similar categories is mutually related; 2. final learning is 
preceded by a phase of partial learning; 3. people prefer similar criteria over easily 
discernible ones; 4. people operate under memory constraints.

1. Introduction

Analogical reasoning is the ability to spot similarities between concepts or domains 
and to use those similarities to transfer knowledge from a concept to another (Gentner, 
1981; 1983). The most common example of analogical reasoning is the completion 
of quadruplets like

Boat : Sea :: Aircraft : ?

Some remarkable cases of analogical reasoning can also be found in the history of 
science (Del Re, 2000; Hoffman, 1980), where it is used to discover new knowledge 
in a partially unknown domain being investigated. The typical example of this use is 
the analogy between the solar system and the atom. This case is representative also 
of the third common use of analogical reasoning: to teach a novel concept by using 
another well-known concept as the source of knowledge. 

In real life novel concepts and domains are often learned simul-taneously, not 
necessarily starting from a well-known concept as a source. This early use of analogical 
reasoning can have advantages: instead of learning several concepts separately, the 
learning process can be unified, thus minimizing the effort both in terms of memory 
and of time.
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Therefore, we start from the hypothesis that analogy can be used between 
simultaneously learned categories. A subsequent hypothesis is that learning is usually 
split into two phases: a first phase of partial learning is followed by a phase of 
refinement; some general "partial-categories" are formed first, which subsequently are 
modified to arrive at the final categories. This minimizes memory and time needed, 
while maximizing the amount of information extracted in each stage. 

Because of this advantage, it may be expected that people prefer to find 
classification criteria that have mutual similarity rather than easily discriminable 
criteria, even when both types are available. This contrasts with the standard views 
of categorization (Rosch, 1978; Nosofsky et al., 1994; Ashby & Maddox, 2005), and 
also with machine–learning models (Lavrac & Dzeroski, 1994; Michalski, 1983), 
which predict that easily discriminable categories are more easily learned.

This two-step process may also give an emergentist explanation of the origin of 
analogy: concepts are similar because they stem from a common partial-category.

From these hypotheses originate a series of predictions: 1. learning of similar 
categories is related (i.e. time between learning of similar categories is less than time 
between learning of dissimilar ones); 2. before learning is complete, the errors are 
not random but they are more frequent inside the partial-categories; 3. when given 
alternative solutions, people find similar criteria instead of dissimilar ones.

To test these hypotheses and predictions, an appropriate task is needed in which 
novel similar concepts are learned simultaneously. One perfect candidate is a task of 
category learning in which some of the categories are similar.

It has been suggested before that analogical reasoning has a role in category 
learning, but only for the discovery of similarities between items of the same category 
(Gentner & Medina, 1998; Gentner & Namy, 1999; Sloutsky & Fisher, 2004). The 
case proposed here, i.e. when there are similarities between categories, has not yet 
been investigated. 

In order to have categories with similarities between them (similarities that can be 
exploited only by using analogical reasoning), those categories must be defined not 
just by features, but by relations (Gentner & Kurtz, 2005). This is the case of categories 
such as "pilot", "captain", "driver", that are defined by the relation of their instances 
with the vehicles concerned, the relations with other people, the environment, and so 
on. Those relations are similar, thus one category can be easily mapped onto the others 
by using analogical reasoning.

2. Experiments

2.1. First Experiment
2.1.1. Design

The first experiment is a category-learning test, with categories defined by 
similarity relations. In order to avoid the influence of any previous knowledge, we 
used categories of a graphical abstract nature, composed of geometric shapes of 
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various colours. Two categories were defined by relations and two by features. All the 
items of the categories were composed of coloured elements, randomly distributed 
over the items. 

The two "relational" categories (indicated by R1 and R2) were defined by the 
numerical relation between the elements. In one category (R1) the number of elements 
of one type was the same as that of another type, in the other category (R2) it was twice 
as many. The two "feature" categories (indicated by  F1 and F2) were instead defined 
only by the presence of a distinctive element. All the items also contained distracting 
elements. For each item the participant had to choose an answer by clicking on one 
of four buttons, then had to confirm his answers by clicking on another "Ok" button. 
After confirmation, a feedback was given: the buttons changed colour, showing the 
correct answer in green and the given answer, if wrong, in red.

2.1.2. Results

For each category a "moment of learning" was computed by using the numbers 
of correct answers. In order to evaluate the relation of learning of similar categories, 
the intervals between the learning of the two "relational" categories (R1, R2) were 
compared to the average of the other intervals (OtherIntAvg). A sign test showed 
that R1R2 < OtherIntAvg (p < 0.05). The same happened for the intervals between the 
"features" categories (F1F2). This means that the two "relational" categories and the 
two "features" categories are related to each other. This result supports the prediction 
that learning of similar categories is mutually related, and thus the hypothesis that 
analogy can be used early in learning, between simultaneously learned cate-gories. 
Instead the sign test of R1R2 vs. F1F2 was not significant (p> 0.05). 

In order to test the hypothesis that learning has two stages: a first phase of partial 
learning, followed by a phase of refinement; an analysis of errors (see below for an 
explanation) was performed. The incorrect answers given by a participant before 
learning of any category has occurred, can be a good indicator of how the learning 
process proceeds for that participant. Three kinds of mistakes were computed: 
classifying an item in the other "relational" category, classifying an item in the other 
"feature" category, and completely incorrect answers. The counts for each kind were 
compared to their random expected values (estimated by using the marginal means).

The pattern that emerges depicts a middle period of "partial learning" of both 
the relational and features categories. In fact the mistakes between similar categories 
occur more frequently than expected at random (sign test p < 0.01), while the 
mistakes between dissimilar categories (i.e. between different kinds of categories) 
are not different from random values (p > 0.05; power > 0.8). These results support 
the hypothesis that analogical reasoning starts to operate from the very beginning 
of learning, and helps in finding similarities, even between categories that are only 
partially learned.
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2.2. Second experiment 
2.2.1. Design

The second experiment introduces the factor of preference for similar or separable 
concepts. Thus participants were given two alternative solutions to the problem: one 
solution involved the use of criteria with similarities between them, across different 
categories. The alternative solution had different criteria for each different category. 
Participants needed just to find one solution; according to their behaviour, it had to be 
clear which solution they had found. The resulting design is summarized in Table 1. 
There were four different categories (plus the residual one), two of which were "dual", 
i.e. defined by two alternative criteria: one, the "analogical criterion" (represented by 
Cx, which stands for "common"), was structurally similar to the analogical criteria of 
the other categories, whereas the other "non-analogical criterion" (represented by Ax,
which stands for "alternative") was unique to that category. Category A was introduced 
to balance the difficulty of the non-analogical criteria (A1, A2 and A3) taken alone, and 
to assess their individual difficulty.

Category D1 D2 S A R
Criteria C1 + A1 C2 + A2 C3 A3 only distractors

C1 + A1 C2 + A3 C3 A2
C1 + A2 C2 + A3 C3 A1

Table 1: Category definition abstract criteria. Dual categories (D1 and D2) have two 
alternative criteria, one Common and one Alternative. Some others (S and A) have 
only one. D stands for dual, S for single, A for alternative, C for common. The residual 
category has no criterion.

Subjects could solve the task in different ways. If, for example, they find rules C1, 
C2, C3 and A3 (for the first group), it can be inferred that similarities are preferred over 
the separability of concepts. If otherwise they find rules A1, A2, C3 , and A3, a better 
and clearer separability is preferred.

Secondly, interactivity was introduced in order to make the test entertaining and 
resembling a game. A number of experiments on analogical reasoning which used 
static figures had already revealed several limits: they had little ecological plausibility, 
caused little interest, and raised poor attention in participants. Moreover, a task with 
interactive items could introduce, among others, causal and synchrony relations, which 
are essential in our everyday–life. More importantly, interactivity allowed to discover 
which criterion was found for each of the categories defined by two alternative criteria. 
In fact it was possible to record all the interactions (namely: clicks) of the user with the 
elements. Given that some elements pertained to one criterion and some other to the 
alternative criterion, when the participants clicked on an element, it was clear which 
criterion was shown. After a criterion was found for a category, for all the subsequent 
items the participant started to click randomly until the group of elements was found 
corresponding to that criterion, then the correct answer was given. Therefore the last 
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click before an answer was given, was with high probability on an element according 
to the criterion discovered. The analysis of these last clicks can reveal which criterion 
(for the dual categories) the participants discovered.

As in the previous experiment, the items were composed by geometric shapes of 
different colours. Each item contained 3 groups of elements. Each  group was formed 
by elements of the same shape and colour. There was aone-to-one correspondence 
between groups and criteria. So in a dual category, two groups were active, one for 
each alternative criterion. While for a single category, only one group was active. 
All the active elements when clicked elicited a reaction. The reactions could be of 
different kinds: a piece of music, or a tone could be played, some elements could 
move, or both. All the elements associated with the common criteria only played a 
piece of music, always the same piece of music for the same category. There were also 
other pieces of music in the test, which were sometimes played when subjects clicked 
on distractors. All the elements of the group for the A1 criterion made the entire group 
react with the same action in synchrony. All the elements of the A2 group also made 
the entire group react all together, but with heterogeneous actions. Finally, the A3 
criterion introduced synchrony between volume and movements: when an element 
was clicked, all the elements of the group gave the same action in turn and a tone was 
played, of which the volume was changed in synchrony with the action.

For each item the participant had to choose an answer, tagging the item with a 
label. A positive feedback was given if the answer was correct. Otherwise a negative 
feedback was given, and the participant could try with another label, until the correct 
answer was found. Then a "Next" arrow but-ton appeared, to go on to the next items. 
A “Back” arrow button was always available to go back to the previously seen (and 
correctly answered) items.

2.2.2. Results 

The novel factor introduced in this experiment was the presence of alternative 
solutions. This allowed the possibility to test the prediction that when given alternative 
solutions, people find similar criteria instead of dissimilar ones. This prediction 
contrasts with the standard theories of category learning, which instead predict that 
the more the categories are separable in the representational space, the easier it is to 
discern them.

For the dual categories, after their learning points, the last clicks before 
answering were counted both for analogical and non-analogical elements. 
A sign test was done to confront the last clicks on analogical and non-
analogical elements. The clicks on the analogical elements were significantly 
more numerous than on the non-analogical elements (p < 0.01), showing that 
the analogical criteria were found more often than the non-analogical ones.  
(The model behaves as the human participants, so for the analysis it is undistinguishable. 
That is, to discover the - possible - action associated to an element, the model has to 
"click" on that element, and only then it is told what "happens", exactly as for human 
participants.)
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This is the new and most important result of this experiment: even if given an 
alternative, the participants found the analogical criteria. Therefore the drive to use 
similarities is stronger than the separability of concepts. This is another confirmation 
of our hypothesis that analogy can be used between simultaneously learned categories. 
Not only can analogy be used, but it is preferred, since in this way it is possible to 
minimize the constraint on memory, and the time required.

In order to test the relation of learning of similar categories, a method similar to 
the previous experiment was used. A sign test showed that the average of the intervals 
between analogical categories is less than the average of the other intervals (p < 0.01) 
in most of the cases, meaning that the analogical categories are related to each other.

In order to test the early use of analogical reasoning, a method similar to the 
previous experiment was used. Also in this experiment a middle period of "partial 
learning" emerged. In fact, the trends are the same as in the previous experiment, thus 
confirming those results.

It is also interesting to note that people who use more often the previously seen 
items (going back to compare them to the present items), solve the test more easily  
(r = - 0.556; p < 0.01). This result is consistent with the theory that some people use a 
more scientific strategy based on the falsification of hypotheses, and some others use 
instead a strategy based on reinforcement. Moreover, this result is a confirmation of 
the hypothesis that people operate under memory constraints.

2.3. Third experiment
2.3.1. Design 

During the execution of the second experiment, doubts arose whether the 
analogical criteria were preferred because they were similar, or because music was 
a feature more salient than movement. This third experiment was performed in order 
to exclude that music was more salient than movement, and to confirm the result in a 
more general context. Thus, it is a generalization of the second one, and the analogical 
criteria are defined by movement and synchrony instead of music. The hypotheses 
tested in this third experiment are the same as in the second, as well as the predictions, 
the constraints that arise from them, and the analyses performed.

2.3.2. Results

The results confirm and generalize what was found in the second experiment. 
Although the preference for similar criteria over separable ones is weaker than in the 
previous experiment, it is still present. This means that in the previous experiment the 
preference was not caused by a greater salience of music. When the similar criteria 
are defined by movements, they are still preferred to separable criteria. Therefore 
the similarity between criteria is the crucial factor, and not some bias introduced by 
a stronger salience of some feature: the drive to use similarities is stronger than the 
separability of concepts.
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3. A Computational Model

On the basis of the findings in the experiments, and according to the assumptions 
for the theory described in the introduction, a computational model was constructed. 
This model diverges from all models proposed until now (e.g. Dora, Seql, Lisa, etc - 
Doumas & Hummel, 2005; Kuene et al, 2000; Markman & Wisniewski, 1997). These 
models cannot explain the results of the present experiments, since they are based on 
different learning processes. Instead, it is more reasonable to adopt a model that can 
lead to a change of ideas, and that has a unified process of reasoning. It is a common 
process to reason in steps: first to make an assumption, then restrict it, then widen it 
again, include something, exclude something else.  When learning various things at 
the same time, use all the available information from all of them. A good strategy then 
is to make a model that can lead to  hypotheses, modify them if appropriate, and then 
use this information also to create hypotheses for other categories. It is not necessary 
that the first hypotheses are completely correct: they are retained even if they are only 
partially correct, so that they can undergo a process of modification. 

The tests used for the performance of the computational model are very similarly 
to those for (human) subjects. For experiment 1, the model is shown one item, and 
is asked to give an answer, then it is given feedback about the right answer. For 
experiments 2 and 3, answers are to be given until the correct answer is found. In each 
case, from the feedback the model can learn the correct classification.

As stated, these changes can be in any direction, which is different from the other 
models. In this way partial categories can be created, and then  subsequently refined 
to form the final categories. This simple mechanism can explain many results of 
the shown experiments, and can even give an emergentist account of some forms 
of analogical reasoning. In the simplest case, the model first finds the correct rule 
for one of the similar categories, then, using some random changes to this rule, it 
creates some other similar rules, until in a few steps it finds the correct rule for the 
other category. Not only is it computationally less “expensive” than finding both rules 
independently, but it is also less “expensive” than explicitly mapping knowledge. In 
order to use structure–mapping, some aspects of the target must be known, and this 
initial acquisition would only lengthen the process. A more interesting case is when 
some partial rule is found first: that is, a rule that is good for two (or more) categories, 
in other words a "partial category". After this initial stage of partial learning, the 
model tries to modify this rule until in a few steps it finds the two final rules, which are 
similar, for they descend from a common ancestor. As for the former case, no explicit 
mapping has taken place, but the process can be described as analogical reasoning.

3.1. Model Architecture
3.1.1. Overview

The general structure and working of the model is very simple. It has a memory 
for hypothesized rules, and another memory for discarded rules (in order that they will 
not be recreated, or used again). Each rule consists of a predicate, and a list of valid 
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categories, and has a weight. This is the first main difference from the existing models: 
rules can be partial or final. Obviously, a rule that is valid for all the categories, or for 
none of them, is discarded. But it is possible to form temporary "drafts" of rules, valid 
for more than one category. Then they will be refined through modification, which 
is another salient new aspect of this model; one of the ways in which a rule can be 
created is by randomly modifying an existing rule.

The model accounts for all the possible ways a rule can be created: 
1.	 it can be based on a shown item, taking some of its properties or hypothesizing a 

relational structure between them;
2.	 it can be created randomly;
3.	 it can be created with the modification of an existing rule; 
4.	 it can be created with the unification (intersection) of  two existing rules.

Therefore it can account for almost all kinds of strategies, that e.g. are based on 
experience, creativity, trial and error, and logic. The use of each method, as well as 
other aspects of the model, are parametrized, so with different parameter values the 
model can reproduce the behaviour of different participants

3.1.2. Answering Phase

The answering phase is quite simple. Starting from the oldest rule, the model seeks 
in memory a rule of which the predicate is true for the given item. If no rule is found, 
a random answer is given. If instead a rule is found, it can be final or partial (that is, 
valid for more than one category). In this latter case the answer is randomly chosen 
between the categories for which the rule is valid.

In the first phase, in which the rules are generic or wrong, the model is expected 
to give wrong or random answers. Then, if it finds partial rules, it will make mistakes 
similar to those of the participants, in their partial learning phase (i.e. giving answers 
inside the partial category). After the correct rules are found, and the partial rules 
deleted (as will be shown below), it will always give the correct answer at the first 
attempt.

3.1.3. Learning Phase

The learning phase is more complex, and consists of various steps. The model 
starts recording, for each rule in memory, if its predicate is true for the current item. 
Each rule can be good, bad, or neutral, for each category. It starts being neutral for all 
the categories, then, when an item is true for its predicate, the rule is marked as good 
for the item's category (unless it was previously marked as bad for that category). If 
instead the item is false for the predicate, the rule is marked as bad, with a probability 
proportional to a parameter. Upon the use of this parameter, it was decided because 
this kind of counter-factual reasoning is not common, and many participants probably 
would not use it. Finally, if the predicate is true for the current item, but the rule is final 
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for another category, the rule is removed, since it would predict the wrong category 
as certain.

A second step of the learning phase is to check if there are final rules for some 
categories. If a final rule is found for a category, all the other partial rules are marked 
as bad for that category, so they would not produce.

The third step is discarding the useless rules, that is, the rules which are good for 
all or none of the categories, or the rules which are partial but too old (according to a 
parameter). The discarded rules are placed in the memory for the bad rules, the size 
of this memory is controlled by a parameter. For experiments 2 and 3, all of these 
recording steps are repeated also for some of the previously seen items, randomly 
chosen: the frequency of this "going back" is controlled by a parameter.

Finally, some new rules are created, with the methods previously explained (i.e. 
based on the shown item, randomly, modifying an existing rule, or intersecting two 
existing rules). If a rule is already in the memory for the bad rules, it is not created 
again.

As a last step, if the memories exceed their maximum sizes (controlled by two 
parameters), rules are randomly deleted from both memories (except for final rules in 
the memory for good rules) until their sizes are as required.

3.1.4. Kinds of Predicates

The model is open with respect to which predicates are actually used. A predicate 
is abstractly defined as something having two functions: "IsTrue" (referred to an item) 
and "ChangeRandom" (which returns a new predicate). Virtually all kinds of predicates 
can be implemented: they must simply provide these functions. In practice, only the 
kinds of predicates useful for the presented experiments are currently implemented, 
but the model can be extended with other predicates. It even can be [even] merged 
with some other model of discovery of relational structures, that can produce new 
predicates from scratch.

The predicates currently implemented are: 1. presence (or absence) of a feature 
or a set of features; 2. abstract number (a lot/a few) of elements with a given feature; 
3. similarity between groups of elements (same/different colour, shape, number);  
4. causal interaction (clicking on some element(s) causes reaction(s) of some kind);  
5 intersection of two other predicates.

3.1.5. Summary of the Parameters

The parameters used by the model can be grouped into three categories: use of 
creation methods (one parameter for each method), available working memory, and 
use of counter-factual reasoning. By using a simple form of simulated annealing, it is 
possible to find the set of parameters that best reproduces a participant's performance. 
Starting from random sets of parameters, the space of the solutions is iteratively 
narrowed until a set of parameters is found which best reproduces the human behaviour.

In addition to these parameters, some values are computed concerning the effective 
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use of some features. The actual use of these features probably changes with different 
tests, so it can be useful to know how much each feature was actually used. When the 
test ends,  the final rules in memory are counted: how many were originally created 
from the shown items, how many randomly, and how many unifying two other rules. 
Also the number of times a rule was changed before becoming the final rule, was 
counted, as a measure of how much modification was used. Finally the average use of 
memory slots was computed.

3.2. Model’s Fit

For the first experiment, the model was able to accurately reproduce the answers 
of 86% of the participants (significance of kappa < 0.05). For the second experiment, 
it was able to accurately reproduce the answers of 79% of the participants.

The sign tests of the learning intervals are significant (p < 0.01), and in the same 
direction as in the experiment. In other terms, also in the model's simulations, learning 
of one category helps learning of another category with a similar relational structure.

The results are the same as in the experiment, also for the sign tests of the given 
versus the expected number of partially incorrect answers during learning. They are 
better than expected (p < 0.01), meaning that also for the model the final learning of 
similar categories is preceded by a phase of partial learning.

As for the preference to learn similar criteria in comparison to learn dissimilar 
ones, the sign test of the clicks on analogical and non-analogical elements gives in the 
model the same result as in the experiments. The clicks on the analogical elements are 
significantly higher in number than on non-analogical elements (p < 0.01).

For what concerns the combinations of parameters found by the simulated–
annealing algorithm, an analysis showed that the modification of rules is effectively 
used. Rules are changed, before becoming the final ones, an average of 1.82 times in 
the first experiment, and 3.68 times in the second and third experiments. Rules are 
created by using the shown items as the initial source almost all the times (99%). 
Instead the probability to find a good rule randomly is very low, as well as the 
probability of finding a good rule unifying two existing rules.

The variables that have the biggest impact on difficulty are the 
availability of memory (r = -.152; p < 0.01), the average use of modifications 
(r = -.318, p < 0.01), and the use of counter-factual reasoning (r = -.346, p < 0.01). 
These results confirm that people operate under memory constraints, and thus take 
advantage of the modification heuristic and of scientific reasoning.

3.3. Summary

The hypotheses on the use of analogical reasoning in category learning have been 
implemented in a model; it uses analogy between simultaneously learned categories, 
and it formulates partial rules for partial categories which are then refined. From these 
partial categories stem the similar final categories: this is an emergentist account of 
analogical reasoning.
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With this new mechanism, this model can reproduce the results of the experiments, 
which were also predictions originating from the hypotheses: 1. learning of similar 
categories is mutually related; 2. final learning is preceded by a phase of partial 
learning; 3. people prefer similar criteria over easily discernible ones; 4. people 
operate under memory constraints.

4. Conclusions

This work describes a model of analogical reasoning that diverges from all the 
standard models of analogical reasoning produced so far (e.g. Gentner, 1981; Gentner, 
1983; Holyoak & Koh, 1985). It is a more general model, based on the observation 
that normally, when learning things, people do not make a sharp distinction between 
known and unknown domains: they just do not know things. For that reason this study 
has  focused on experiments where novel similar concepts are learned simultaneously.

For over twenty years the studies on analogical reasoning have focused on the analogy 
between completed structures, and they had to deal with high-complexity problems like 
mapping, concept alignment, and their computational complexity. On the contrary, it 
seems much more important to shift the attention toward the investigation of the role of 
analogy in conditions where different similar concepts are learned simultaneously. This 
 is a more general phenomenon, which happens more frequently than the analogy 
between completed structures.

Constraints of time and memory have a big impact on analogical reasoning and 
generally on human learning. Differently from those previous studies, which avoided 
this problem, or dealt with it only marginally, this study attempts to make these 
constraints a central issue. Due to the limits imposed by restricted memory and time, 
the human mind resorts to analogy when novel concepts must be acquired. As already 
suggested by some earlier studies (e.g. Keane, 1995) and clearly demonstrated in 
this research: analogy is an extremely useful heuristic, that optimizes the amount of 
information that must be extracted and recorded, thus reducing the effort of memory 
and time required. It has implications for research on category-learning, especially 
where concepts have to be clearly distinguished (separated). 

Given the salience of the discoveries presented in this work for the future 
development of cognitive science, some suggestions arise about what needs to be 
studied. Other interesting work could be done on the early use of analogy, in all 
the cases in which learning must take place in a limited amount of available time 
and resources. In those cases it is difficult to learn concepts separately and to use 
structure–mapping (as instead proposed by Kurtz & Loewenstein, 2007; Kurtz, 
Miao & Gentner, 2001). As far as category–learning is concerned, the theories which 
assume the need of a sharp separability of concepts need to be revised to account for 
the results of the present study.
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