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Abstract the same functions with lesser waste of energy,chvhi
While the correlation between Evolution (and theref !””%a”.s thalt evoluglon mus';)ha_ve favored_not. onlinerease
Intelligence) and increase of Brain Volume is cdeséd In brain volume, but even brain re-organization.
evident, the difficulty in defining and quantifyin@rain . L
Complexity has been always an obstacle to studydf how Neural Complexity and Artificial Neural Networks

much it is important. In the recent years an effat been In the recent years Tononi et al. (1994, 1996, PQBSlt
made to fill this gap, and the present work usesdhnew

measures to investigate the correlation betweetuten of with lthe_ questh(rjl Qf dﬁf'mng and ?jyahntlfylng ndura
Artificial Neural Networks and their Complexity. Genetic f‘:omp_exny, consl erl_ng”t e app‘J‘grent Ic 9t0my e
Algorithm has been used to make Khepera Robots/evial functional segregation” and ‘integration”. Borravg
four different tasks, and the resulting Neural Nemts' concepts from statistic physics, as for instancetudlu
Complexities have been measured. Results showndiszmnt Information, they define Neural Complexity as theerage
correlation between Complexity and Fitness. Mutual Information between all the bipartitions dfe
Keywords Neural Complexity; Brain Volume; Robotics;  Prain system” K), summed on all the possible quantities of
Evolution; Genetic Algorithms; Artificial Neural Kiworks. these bipartitions:
Introduction n/2 ) )
Even admitting the unquestionable importance ofinbra @) Cy (X) = Z<M| (xj 2 Xj )>
k=1

volume in the creation of more or less intelligbings,
Darwin himself (1882) pointed out that it didn’'tfBoe as
an explanatory variable, but the increase of thainbr
organization had also to be taken in consideratinom . ) ) .
then on many studies have been carried out to pedxave Neural Complexity cannot be measured in biologic
all. the effect of brain volume on behavior: Markigt al.  SyStéms (neithen vivo nor in vitro), although, for instance,
(1999, 2001, 2004), for instance, proved that straif mice  van Cappellen van Walsum et al. (2003), Burgessiet
selected on the basis of brain volume differ fromeo (2003) David et al. (2004) tried to estimate itrtstay from
another in behavior (increase of stereotyped behaamnd MEG or EEG data_. _Instead, Neural Comple_xny can be
anxiety in small brain mice) but Anderson (1995pwhd computed on Art_|f|0|al Neura_l Networks - with S'”?P'?
that neither total brain volume nor the volume aicke procedurel and it is even possible to make these artificial
separate brain area cause differences in learnimy a NEWOrks evolve with genetic algorithms, in ordeanalyze
“reasoning” capacities; Nicolakakis et al (2003)) the howlcomplexny changes in function of evolution,ighis
other hand, studied the encephalization of birdcigse Precisely the purpose of the present work.

proving its correlation with behavioral innovatigrioth et .

al. (2005) proved that in Cetaceans the ratio betwgrey Experiments

and white matter decreases with the increase oin braThe neural networks used for this work are fullgueent
volume, while ratio between brain areas changesrdoty  networks of the Elman type (1990), that is, witlsiagle

to the species (and its habitat); and many otheties were layer of hidden neurons totally interconnected wittelf.

Therefore, only those systems which are highlygrated
and interconnected can show a high Neural Complexit

carried out on similar subjects. This simplification makes the networks' structurighty
flexible, depending on the hidden neurons' conoesti
Evolution and Brain Organization weights, and there is no need to deal directly wiith

Only in the recent years, however, interest in rbrai depending on how many weights are non-zero, theltres
complexity and organization has risen again. Mathtézal will vary from structures V\_/lth many feedback_s amnplex
models have proved that an increase in brain volum@ynamics to purely reactive structures, equivatenteed-
without a more complex brain organization andforward networks.

modularization is impossible (Braitenberg, 2001:a&a A genetic algorithm has then been used to make the
2000; Karbowsky, 2003). A substantial brain re_connect_lons’ matrix evolve, with a 20(_) !nQ|V|duaIs’
organization during evolution has been proved bypopulatlon amongst whom only the best 25 individueave
comparing endocranial casts of different hominigialf, ~Peen allowed to breed. Experiments have been regpéat
1991; Rilling and Seligman, 2002). All the theoriesthis ~ Several amounts of hidden neurons: 4, 5, 6, 71913, 16
field share the idea that a better organized becaim fulfill

! http:/iww.indiana.edu/~cortex



and 20. Thus both the effect of evolution and tfiece of
“brain volume” on fitness have been verified.

Should the robot crash into a wall, its life epoahds
immediately and a value of 2000 is subtracted fribmm

The open source simulator YAKS (Carlsson, 1999) hagained fitness: this value will be sufficient toles# those

been used for all of the experiments: it can siteuthe

behavior of Kephera robdtsn environments with walls,

light sources and movable objects. The environrsetiing
is different for each of the four experiments, adlas the
tasks assigned to robots (that are determined dyitiess

individuals who are able to avoid obstacles, withmaking
the function too discontinuous.

At the end of the four life epochs the achievedefis
values are summed up and the best 25 individuas
allowed to breed, generating 8 sons for each ofnthia

function used by the genetic algorithm to selecé th each son, each original weight is increased (oredesed) by

individuals who will breed). All of the experimentsave
been repeated twice in order to test their relighigiven
the many stochastic processes involved. As an pealef

the accuracy of the design and the resulting data,

difference could be noticed between the two repest

a value randomly generated with a normal distrdouti

The most evolved individuals adopt essentially tai
same strategy, also in the repetition of the expent: they
move as much straightforwardly as possible unélthome
to a wall, then turn in the direction which invodvéesser

The idea beneath these experiments is that white thstimulation of their sensors.

evolution goes on and the systems’ fitness inceage

complexity grows too: so we can say that the sam&econd Experiment: Search of Sources of Light. This

evolutionary force towards a growth in complexifyeoate
both in natural evolution and in “artificial evoioh” (that
is, the evolution of artificial beings).

Design

The four experiments differ only for the environmhémalls,
lights, objects) and the task assigned to the aggmst the
fitness function). The Artificial Neural Networksna@ the
Genetic Algorithms used are the same throughoutfdhe
experiments. The reason to perform different expenis is
only to see if in different tasks and environmetisre are
the same correlations between Complexity and Ftnes

First Experiment: Navigation in a Maze. The
environment is a square maze of 1m side with séweiis:
a Kephera robot has to navigate inside it withaaisking
into its walls, which would cause its immediate tle&ach
time the starting point and the starting directioary
randomly, and fitness has contributions both atyevtine
and at the end of the period of life. For everytanst the
following quantity is added:

) Ft =ml+m2—4mbs(ml—m2)—1

experiment tests the integration of two sensory alitiés:
infrared as proximity sensors and environment |ggvisors
for distance to light sources.

The environment is very simple: four walls compase
square with sides of 70cm, and three lights aréipoed at
different distances from the four vertices. Thidfedent
positioning in respect to the vertices is to avthdt the
agent works out a strategy based only on reachivertax,
without using the environment light sensors.

Also in this experiment the contributes to the d&a are
both added at every instant and at the end ofdbats life.
At every step of the simulation the distance to niearest
source of light is calculated: if it is less thasg a value of
20 is added to the fitness, otherwise the formRjaq used.
In this way the active search of light is rewardedt also
the remaining near a light, once it is found. Aisothis
experiment the agent dies immediately if it colfidand a
value of 1000 is subtracted from its gained fitness

If the agent arrives to its life's natural end adistance
less than 6cm from a light, it is rewarded withesti2000
"points". At the end of the four epochs the glofitaless is
computed and the best 25 robots are allowed tadbrethe
same way of experiment 1.

Third Experiment: Search of Sources of Light in a

ar

where m; and m, represent the rotation speed of bothMaze. The third experiment is a more complex version of
engines, which can range between 0 (backward marimuthe second one: the environment is the same, ktht thve
speed) and 1 (onward maximum speed). Onward mddion addition of some walls in proximity of the souragslight,

so encouraged, whilst spinning is discouraged. rohet is
free to navigate inside the maze using its sensdrich are
stimulated by the walls’ closeness.

At the end of the epoch, a quantity, proportiomalhe

walls that must be avoided to reach the lights. fitmess
function is also the same, with the difference thaistance

of 10 cm from the lights is rewarded at every insta

(instead of 5cm) and at the end of the agent'salifistance

distanced (expressed in millimeters) between starting pointof less than 9cm is rewarded (instead of 6cm). This

and point of arrival, is added to the fitness ailie during
the navigation. Therefore the final function is:

3) F, =3d+ Z F,
t

2 http://mww.k-team.com

because the presence of the additional walls israike a
deterrent too strong in comparison with the pusfird a
source of light.



Experiment 2

Figure 1. Average Fitness in function of the getiens and number of neurons.

Fourth Experiment: M oving Objects toward a Sour ce of
Light. The fourth experiment is also inspired by the selco
one: in the environment there are a source of kglit some
scattered objects. The task in this case congisggasping
the objects and moving them near the source of.lighe
fitness is function of the number of moved objeatsl of
their distance from the source of light at the eaidthe
agent's life epoch.

Results

The most interesting analysis concerns the effadtitness
of the number of neurons (i.e. the equivalent @ lthain
volume) and the Neural Complexity.

Number of Neurons. Both the Analysis of Variance and

Neural Complexity. Since the number of neurons is not
influent, we proceeded to normalize the fitness nadral
complexity measures (the computation of the neural
complexity is biased by the number of neuronskyrtalyze
the effect of Neural Complexity on Fitness, in &ur
experiments. As shown by Figure 2 and Table 1[litha
experiments the correlation between Fitness andradlleu
Complexity is significant (analogous results carob&ined
analyzing the correlation between Generations aadril
Complexity). This repeatability of the results asks with
various structures and difficulties supports owrotty, and
shows that the Neural Complexity Factor is alwaykient

for the ability (i.e. "intelligence") of the systsm

Table 1. Pearson Correlations of Fitness in fumctib

Pearson Correlation show that the number of neurons

doesn't affect the Fitness of the systefs (30), in all four
experiments, as also shown by Figure 1. This igdefy in
contrast with all the actual theories, which coasidhe
brain volume the most important factor for intediigce. It is
worth to note that the space of solutions, givendbmplete
recurrence of the hidden layer, is proportionathte square

of the number of neurons: the advantage maybe @ahjui

with a greater quantity of neurons is probably thst to the
increased difficulty to search optimal solutions.

Neural Complexity.

Exp 1

Exp 2

Exp 3

Exp 4

290(*)

462(%)

286(*)

:388(*)

Significance: ** P < 0.01




and the correlation between complexity and "ingelfit"
behaviors.
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