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Abstract 

While the correlation between Evolution (and therefore 
Intelligence) and increase of Brain Volume is considered 
evident, the difficulty in defining and quantifying Brain 
Complexity has been always an obstacle to study if and how 
much it is important. In the recent years an effort has been 
made to fill this gap, and the present work uses these new 
measures to investigate the correlation between evolution of 
Artificial Neural Networks and their Complexity. A Genetic 
Algorithm has been used to make Khepera Robots evolve in 
four different tasks, and the resulting Neural Networks' 
Complexities have been measured. Results show a significant 
correlation between Complexity and Fitness. 
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Introduction 
Even admitting the unquestionable importance of brain 
volume in the creation of more or less intelligent beings, 
Darwin himself (1882) pointed out that it didn’t suffice as 
an explanatory variable, but the increase of the brain 
organization had also to be taken in consideration. From 
then on many studies have been carried out to prove, above 
all, the effect of brain volume on behavior: Markina et al. 
(1999, 2001, 2004), for instance, proved that strains of mice 
selected on the basis of brain volume differ from one 
another in behavior (increase of stereotyped behavior and 
anxiety in small brain mice) but Anderson (1995) showed 
that neither total brain volume nor the volume of each 
separate brain area cause differences in learning and 
“reasoning” capacities; Nicolakakis et al (2003), on the 
other hand, studied the encephalization of bird species, 
proving its correlation with behavioral innovations; Poth et 
al. (2005) proved that in Cetaceans the ratio between grey 
and white matter decreases with the increase of brain 
volume, while ratio between brain areas changes according 
to the species (and its habitat); and many other studies were 
carried out on similar subjects. 

Evolution and Brain Organization 
Only in the recent years, however, interest in brain 
complexity and organization has risen again. Mathematical 
models have proved that an increase in brain volume 
without a more complex brain organization and 
modularization is impossible (Braitenberg, 2001; Kaas, 
2000; Karbowsky, 2003). A substantial brain re-
organization during evolution has been proved by 
comparing endocranial casts of different hominids (Falk, 
1991; Rilling and Seligman, 2002). All the theories in this 
field share the idea that a better organized brain can fulfill 

the same functions with lesser waste of energy, which 
means that evolution must have favored not only an increase 
in brain volume, but even brain re-organization.  

Neural Complexity and Artificial Neural Networks 
In the recent years Tononi et al. (1994, 1996, 2003) dealt 
with the question of defining and quantifying neural 
complexity, considering the apparent dichotomy between 
“functional segregation” and “integration”. Borrowing 
concepts from statistic physics, as for instance Mutual 
Information, they define Neural Complexity as the average 
Mutual Information between all the bipartitions of the 
“brain system” (X), summed on all the possible quantities of 
these bipartitions: 
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Therefore, only those systems which are highly integrated 
and interconnected can show a high Neural Complexity. 

Neural Complexity cannot be measured in biologic 
systems (neither in vivo nor in vitro), although, for instance, 
Van Cappellen van Walsum et al. (2003), Burgess et al. 
(2003) David et al. (2004) tried to estimate it starting from 
MEG or EEG data. Instead, Neural Complexity can be 
computed on Artificial Neural Networks with simple 
procedures1, and it is even possible to make these artificial 
networks evolve with genetic algorithms, in order to analyze 
how complexity changes in function of evolution, which is 
precisely the purpose of the present work. 

Experiments 
The neural networks used for this work are fully recurrent 
networks of the Elman type (1990), that is, with a single 
layer of hidden neurons totally interconnected with itself. 
This simplification makes the networks' structure highly 
flexible, depending on the hidden neurons' connections' 
weights, and there is no need to deal directly with it: 
depending on how many weights are non-zero, the result 
will vary from structures with many feedbacks and complex 
dynamics to purely reactive structures, equivalent to feed-
forward networks. 

A genetic algorithm has then been used to make the 
connections’ matrix evolve, with a 200 individuals’ 
population amongst whom only the best 25 individuals have 
been allowed to breed. Experiments have been repeated for 
several amounts of hidden neurons: 4, 5, 6, 7, 9, 11, 13, 16 
                                                           

1 http://www.indiana.edu/~cortex 



and 20. Thus both the effect of evolution and the effect of 
“brain volume” on fitness have been verified. 

The open source simulator YAKS (Carlsson, 1999) has 
been used for all of the experiments: it can simulate the 
behavior of Kephera robots2 in environments with walls, 
light sources and movable objects. The environment setting 
is different for each of the four experiments, as well as the 
tasks assigned to robots (that are determined by the fitness 
function used by the genetic algorithm to select the 
individuals who will breed). All of the experiments have 
been repeated twice in order to test their reliability, given 
the many stochastic processes involved. As an evidence of 
the accuracy of the design and the resulting data, no 
difference could be noticed between the two repetitions. 

The idea beneath these experiments is that while the 
evolution goes on and the systems’ fitness increases, the 
complexity grows too: so we can say that the same 
evolutionary force towards a growth in complexity operate 
both in natural evolution and in “artificial evolution” (that 
is, the evolution of artificial beings). 

Design 
The four experiments differ only for the environment (walls, 
lights, objects) and the task assigned to the agents (i.e. the 
fitness function). The Artificial Neural Networks and the 
Genetic Algorithms used are the same throughout the four 
experiments. The reason to perform different experiments is 
only to see if in different tasks and environments there are 
the same correlations between Complexity and Fitness. 

First Experiment: Navigation in a Maze. The 
environment is a square maze of 1m side with several walls: 
a Kephera robot has to navigate inside it without crashing 
into its walls, which would cause its immediate death. Each 
time the starting point and the starting direction vary 
randomly, and fitness has contributions both at every time 
and at the end of the period of life. For every instant t the 
following quantity is added: 
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where m1 and m2 represent the rotation speed of both 
engines, which can range between 0 (backward maximum 
speed) and 1 (onward maximum speed). Onward motion is 
so encouraged, whilst spinning is discouraged. The robot is 
free to navigate inside the maze using its sensors, which are 
stimulated by the walls’ closeness. 

At the end of the epoch, a quantity, proportional to the 
distance d (expressed in millimeters) between starting point 
and point of arrival, is added to the fitness collected during 
the navigation. Therefore the final function is:  
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2 http://www.k-team.com 

Should the robot crash into a wall, its life epoch ends 
immediately and a value of 2000 is subtracted from the 
gained fitness: this value will be sufficient to select those 
individuals who are able to avoid obstacles, without making 
the function too discontinuous. 

At the end of the four life epochs the achieved fitness 
values are summed up and the best 25 individuals are 
allowed to breed, generating 8 sons for each of them. In 
each son, each original weight is increased (or decreased) by 
a value randomly generated with a normal distribution. 

The most evolved individuals adopt essentially all the 
same strategy, also in the repetition of the experiment: they 
move as much straightforwardly as possible until they come 
to a wall, then turn in the direction which involves lesser 
stimulation of their sensors. 

Second Experiment: Search of Sources of Light. This 
experiment tests the integration of two sensory modalities: 
infrared as proximity sensors and environment light sensors 
for distance to light sources. 

The environment is very simple: four walls compose a 
square with sides of 70cm, and three lights are positioned at 
different distances from the four vertices. This different 
positioning in respect to the vertices is to avoid that the 
agent works out a strategy based only on reaching a vertex, 
without using the environment light sensors. 

Also in this experiment the contributes to the fitness are 
both added at every instant and at the end of the agent's life. 
At every step of the simulation the distance to the nearest 
source of light is calculated: if it is less than 5cm, a value of 
20 is added to the fitness, otherwise the formula (2) is used. 
In this way the active search of light is rewarded, but also 
the remaining near a light, once it is found. Also in this 
experiment the agent dies immediately if it collides, and a 
value of 1000 is subtracted from its gained fitness. 

If the agent arrives to its life's natural end at a distance 
less than 6cm from a light, it is rewarded with other 2000 
"points". At the end of the four epochs the global fitness is 
computed and the best 25 robots are allowed to breed in the 
same way of experiment 1. 

Third Experiment: Search of Sources of Light in a 
Maze. The third experiment is a more complex version of 
the second one: the environment is the same, but with the 
addition of some walls in proximity of the sources of light, 
walls that must be avoided to reach the lights. The fitness 
function is also the same, with the difference that a distance 
of 10 cm from the lights is rewarded at every instant 
(instead of 5cm) and at the end of the agent's life a distance 
of less than 9cm is rewarded (instead of 6cm). This is 
because the presence of the additional walls is otherwise a 
deterrent too strong in comparison with the push to find a 
source of light. 
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Figure 1. Average Fitness in function of the generations and number of neurons. 

Fourth Experiment: Moving Objects toward a Source of 
Light. The fourth experiment is also inspired by the second 
one: in the environment there are a source of light and some 
scattered objects. The task in this case consists in grasping 
the objects and moving them near the source of light. The 
fitness is function of the number of moved objects and of 
their distance from the source of light at the end of the 
agent's life epoch. 

Results 
The most interesting analysis concerns the effect on Fitness 
of the number of neurons (i.e. the equivalent of the brain 
volume) and the Neural Complexity. 

Number of Neurons. Both the Analysis of Variance and 
Pearson Correlation show that the number of neurons 
doesn't affect the Fitness of the systems (P > .30), in all four 
experiments, as also shown by Figure 1. This is definitely in 
contrast with all the actual theories, which consider the 
brain volume the most important factor for intelligence. It is 
worth to note that the space of solutions, given the complete 
recurrence of the hidden layer, is proportional to the square 
of the number of neurons: the advantage maybe acquired 
with a greater quantity of neurons is probably lost due to the 
increased difficulty to search optimal solutions. 

Neural Complexity. Since the number of neurons is not 
influent, we proceeded to normalize the fitness and neural 
complexity measures (the computation of the neural 
complexity is biased by the number of neurons), to analyze 
the effect of Neural Complexity on Fitness, in all four 
experiments. As shown by Figure 2 and Table 1, in all the 
experiments the correlation between Fitness and Neural 
Complexity is significant (analogous results can be obtained 
analyzing the correlation between Generations and Neural 
Complexity). This repeatability of the results in tasks with 
various structures and difficulties supports our theory, and 
shows that the Neural Complexity Factor is always influent 
for the ability (i.e. "intelligence") of the systems. 
 

Table 1. Pearson Correlations of Fitness in function of 
Neural Complexity. 

 
Exp 1 Exp 2 Exp 3 Exp 4 

.290(**) .462(**) .286(**) .388(**) 
Significance: ** P < 0.01 
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Figure 2. Variation of Fitness in function of Neural 
Complexity, for the various experiments. 

 

Discussion 
Although the importance of the brain volume as a 
fundamental factor for intelligence has been extensively 
studied, as well as the increase of Encephalization Quotient 
(Jerison, 1973) during the evolution of species, an aspect 
often neglected is the brain organization and complexity. 
The modern information technologies allow to simulate the 
evolution of simple "artificial brains" that control 
autonomous agents (robots) in environments of varying 
complexity, and to subsequently study every aspect of the 
resulting neural networks, since the complete connections 
matrix is available and can be analyzed in different ways. 

The complexity measures used in this work have been 
rarely used before for mobile agents. Confronting the 
Fitness with the Neural Complexity computed for the 
Artificial Neural Networks resulting from the evolution, the 
most interesting result has been the discovery that also in 
the evolution of artificial systems operates the same force 
toward complexity that operates in natural evolution. There 
is instead no influence of the number of neurons on the 
agents' fitness, but must be noted that the number of neurons 
couldn't be modified by the genetic algorithm, therefore it is 
impossible to tell if the evolution would have also promoted 
bigger "brains". Surely, it promotes better organized and 
more complex brains. 

Certainly much more complex researches are needed to 
generalize this discovery to biological systems: neural 
networks of various magnitudes bigger, able to learn, 
possibly with an ontogenesis similar to the biologic one, 
which control agents with richer sensory and motor systems, 
in more varying and complex environments. 

Nevertheless, considering the available means, the present 
research has however achieved interesting and important 
results, showing a parallel between the evolution of natural 
and artificial systems: the force toward a greater complexity, 

and the correlation between complexity and "intelligent" 
behaviors. 
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