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ABSTRACT 

Structure-mapping theory suggests that a 
mechanism of explicit comparison is 
fundamental to the process of analogical 
learning and development. In this paper we 
argue that analogical learning does not occur 
only through explicit comparison; instead, we 
show that an mechanism based on the priming 
and activation of the substructures which make 
up representations can also explain analogical 
learning, with no comparison taking place.  We 
show that these two mechanisms (explicit 
comparison and substructure priming) have 
different computational characteristics and 
apply at different stages of the learning 
process.  We therefore propose a two-process 
account of analogical learning, in which 
substructure priming dominates in early and 
mid-stage learning but structure-mapping 
dominates in late-stage learning.  We also link 
these two mechanisms for analogy to current 
two-process models of learning in general, with 
the priming mechanism for analogical learning 
being related to implicit associative learning, 
while structural alignment is linked to learning 
via explicit hypothesis testing.    

 
Structure-mapping theory suggests that the 
process of comparison plays a fundamental 
role in the learning and development of 
category rules (rules which identify category 
members and distinguish members of different 
categories). Structure-mapping theorists give 
two separate roles for the process of 
comparison during learning. First, they propose 
that as a learning mechanism, the process of 

comparison between representations facilitates 
the identification of structural commonalities 
and the abstraction of category rules. Second, 
they propose that comparison facilitates the 
application of abstract knowledge (general 
category rules) to new instances (see e.g. 
Doumas, Hummel & Sandhofer, 2008; Fisher 
& Sloutsky, 2005; Gentner, 2003; Gentner & 
Medina, 1998; Gentner & Namy, 1999; Namy 
& Gentner, 2002; Namy, Smith, & Gershkoff-
Stowe, 1997, on the structural comparison 
process in learning and development).  

In this paper we argue that the identification 
of structural commonalities during learning 
does not occur only through the comparison 
and structure-mapping of different 
representations. Instead, we show that a simple 
account, based on the priming and activation of 
the substructures which make up 
representations, can also explain the 
production of structural commonalities during 
learning, with no comparison taking place.  In 
this priming account, relational substructures 
which a learner has successfully used to 
understand and form rules for one domain are 
likely to be re-used by the learner to 
understand and form rules for a second 
domain.  This re-use of relational substructures 
will produce structural commonalities between 
the learner’s representations of both domains 
and therefore cause the learner to see an 
analogical relationship between both domains.   

The idea that relational priming plays a role 
in analogy is not new (see, e,g. Leech, 
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Mareschal, &. Cooper, 2008).  The main 
novelty in this paper is an analysis of the 
relationship between structure-mapping 
comparison and substructure priming as 
mechanisms for analogical learning. We show 
that these mechanisms have different 
computational characteristics and therefore 
apply in different phases of learning.  These 
two mechanisms for analogical learning also 
have suggestive parallels in current two-
process accounts of category learning in 
general (see e.g. Maddox & Ing, 2005; 
Zeithamova,  & Maddox, 2005).   

The organization of our paper is as follows.  
In the first section of the paper we present two 
computer models of analogical learning, one 
where analogical learning is based on 
structure-mapping comparison (Kuehne, 
Gentner, Forbus & Quinn, 2000; Kuehne, 
Gentner, Forbus, 2000) and the second where 
analogical learning occurs via a form of 
substructure priming with no comparison 
process (Bianchi & Costello, 2009).  Both 
models have been applied to experimental 
learning data, providing good levels of fit. 

In the second section we assess the 
performance of these two approaches at 
different stages of learning.  We show that 
these two mechanisms are in some ways 
complementary, with comparison not 
performing effectively early in learning (when 
there are many alternative category rules to be 
considered and compared) but providing 
superior performance later in learning (when it 
allows the detailed comparison of a small 
number of remaining category rules).  
Conversely, substructure priming has its 
strongest influence early in learning (when it 
provides an efficient way of distinguishing 
between the many alternative category rules to 
be considered at that stage), while priming 
does not perform as effectively later in learning 
(when there are only a small number of 
candidate rules available, all equally primed). 

In the third section we place our two-process 
model of analogical learning in a broader 
context by describing its relationship to the 
current two-process view of general category 
learning.  This view sees category learning as 

involving both an implicit, automatic, 
unconscious, associative learning process and 
an explicit, voluntary, conscious, hypothesis-
testing learning process.  We see the priming 
mechanism for analogical learning as being 
related to implicit associative learning, while 
structural alignment and comparison is related 
to explicit hypothesis testing.   

.  
PROGRESSIVE ALIGNMENT IN SEQL 
 

SEQL (Kuehne, Gentner, Forbus & Quinn, 
2000; Kuehne, Gentner, Forbus, 2000) is a 
model of category learning based on 
comparison and progressive structural 
alignment.  During learning of a single 
category this model maintains a set of 
generalizations (candidate rule structures 
which may define the category or some subset 
of that category) and a set of exemplars 
(instances of the category which are not 
captured by any current generalization)   Each 
generalization is seen as assimilating a set of 
previously seen exemplars (those exemplars 
who match the structure of that generalization). 
As each new exemplar E arrives, it is first 
compared with each existing generalization 
using structural alignment (implemented via 
SME, the Structure-Mapping Engine).  
Generalisations are sorted according to the 
number of previously seen exemplars they 
assimilate, so that E is first compared with the 
most successful previous generalization (the 
one that has assimilated most exemplars), then 
the next most successful generalization, and so 
on.  The first generalization Gi in this sorted 
list whose structural similarity to E exceeds a 
preset  match threshold, T, is selected as the 
correct generalization for E, and E is 
assimilated into Gi by replacing Gi with the 
structural overlap  between Gi and E.  If no 
generalization is sufficiently similar, then E is 
compared with each stored exemplar Ei. If one 
of those matches is over threshold, then their 
overlap becomes a new generalization, and Ei 

is removed from the stored exemplars. 
Otherwise, E is added to the set of stored 
exemplars.   
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The threshold T determines how 
conservative this algorithm will be: If T = 1.0, 
then no abstraction will occur, since only 
perfect matches would be grouped. If T = 0.0, 
then any two descriptions could match, leading 
quickly to an empty description as the concept 
representation.  To ensure that exemplars are 
not assimilated to vacuous generalizations, 
Kuehne, Gentner, Forbus & Quinn (2000) 
suggest that this algorithm requires a high 
value for T: in their studies they find that 
values for T in the range 0.85 to 0.98 (roughly, 
85% to 98% overlap between structures being 
compared) give the best fit to human learning 
performance.    

Learning takes place in this model whenever 
a new exemplar has a high enough analogical 
overlap with an already successful 
generalization.  When this occurs the 
generalization is updated by retaining only the 
shared structure that forms the alignment.  
Nonoverlapping aspects of a generalisation are 
thus "worn away" with each new assimilated 
exemplar, gradually producing a generalized 
rule for category membership.   

 
EMPIRICAL SUPPORT FOR LEARNING 
BY PROGRESSIVE ALIGNMENT 
Empirical support for the progressive 
alignment account of learning comes primarily 
from the fit of the SEQL model to 
experimental data  from studies by Marcus, 
Vijayan, Rao & Vishton (1999).  These studies 
show that infants as young as seven months 
can process simple language-like stimuli and 
build generalizations sufficient to distinguish 
familiar from unfamiliar patterns in novel test 
stimuli. In Marcus et al's study, the stimuli 
were simple ‘sentences’, each consisting of 
three nonsense consonant-vowel ‘words’ (e.g ., 
‘ba’, ‘go’, ‘ka’). All habituation stimuli had a 
shared grammar, either ABA or ABB. In ABA-
type stimuli the first and the third word are the 
same: e .g, ‘pa-ti-pa’. In ABB-type stimuli the 
second and the third word are identical: e.g ., 
‘le-di-di’. The infants were habituated on 16 
such sentences, with three repetitions for each 
sentence. The infants were then tested on a 
different set of sentences that consisted of 

entirely new words. Half of the test stimuli 
followed the same grammar as in the 
habituation phase; the other half followed the 
non-trained grammar. Marcus et al. found that 
the infants dishabituated significantly more 
often to sentences in the non-trained pattern 
than to sentences in the trained pattern. Based 
on these findings Marcus et al. proposed that 
infants had learned abstract algebraic rules.  
Kuehne, Gentner, Forbus & Quinn (2000) 
applied the SEQL model to this data and found 
that, unlike other models (particularly 
connectionist models) the SEQL model of 
category learning learned the grammar stimuli 
within the span presented to the infants and did 
not require supervision to learn successfully.   
 
ANALOGICAL LEARNING BY PRIMING 

As an alternative to progressive alignment, 
we propose a mechanism where the 
identification of structural commonalities 
during learning does not require comparison 
and alignment. Instead primed activation of the 
relational substructures which make up 
representations can explain the production of 
structural commonalities during learning, with 
no comparison taking place. In this type of 
account, relational substructures which a 
learner has successfully used to understand and 
form rules for one domain are likely to be re-
used by the learner to understand and form 
rules for a second domain. This re-use of 
relational substructures can produce structural 
commonalities between both domains and 
therefore cause the learner to see an analogical 
relationship between both domains. 

This type of priming approach to analogy 
could be instantiated in many different ways.  
We’ve recently developed a computational 
model of analogical learning (Bianchi & 
Costello, 2008) that specifically applies this 
type of account to the task of category 
learning; specifically, to situations in which 
multiple different categories are learned 
simultaneously by the presentation of a series 
of exemplars of those different categories.  We 
describe this model briefly here and show it 
matches participant performance in a multiple-
category learning task. 
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At the heart of our model are two distinct 
memories, one of which contains the currently 
successful candidate rules for the categories 
being learned, the other of which contains a set 
of failed rules.  Both of these memories have a 
fixed, relatively small size (only a small 
number of rules can be stored in each 
memory).  When a new exemplar is presented 
to the model for classification, all currently 
successful candidate rules that apply to that 
exemplar are selected from memory; one of 
those rules is randomly chosen, and the 
category predicted by that rule is given as the 
classification response for the presented 
exemplar.  Candidate rules may either be ‘full’ 
(identifying a single category as the correct 
response for a given exemplar) or ‘partial’ 
(identifying more than one category as 
possibly correct).  For partial rules, the model 
selects one of the possibly correct categories at 
random as its response.     

After an exemplar has been presented for 
classification and the model has given a 
response, the model is given feedback with the 
correct answer, from which it can learn.  In the 
learning phase the model records the 
correctness of the currently successful rules 
based on the current exemplar’s category 
membership, moves incorrect rules from the 
‘candidate rule’ memory to the ‘failed rule’ 
memory, removes rarely used rules from the 
‘candidate rule’ memory while leaving 
frequently used rules present (priming further 
use of those rules), and finally creates some 
new candidate rules to be added to memory. 

The creation of new candidate rules is 
fundamental to the model’s mechanism for 
learning.  The model provides four different 
ways in which new candidate rules can be 
created.  These methods of rule creation reflect 
different kinds of reasoning.  One method for 
rule creation involves using the current 
exemplar as a seed.  A second method involves 
randomly generating a new rule.  A third 
method involves creating a rule for one 
category by randomly modifying  an existing 
rule already in memory for some other 
category; and a fourth method involves 
creating a new rule by randomly combining 

two already-existing rules. The rate of use of 
the four methods can be set by four different 
parameters, so the model can have behavior 
that is more or less anchored in the set of 
observed exemplars, more or less scientific, 
and more or less analogical.  

The most important feature in this model is 
that it is able to create partial rules that, if 
successful, can be further refined through 
modification.  This allows the model to 
produce analogical rules for two different 
categories.  Consider two categories that have 
some particular shared structure but are 
distinguished from each other by alignable 
differences within that structure.  Presented 
with examples of these categories the model 
would (gradually and randomly) form a partial 
rule capturing the shared structure of those two 
categories (thus distinguishing examples of 
those categories from examples of other 
categories), and then (again gradually and 
randomly) modify that rule to produce two 
final rules, one for each category.  These two 
final rules would both possess the same shared 
(analogical) structure common to both 
categories, but would also contain alignable 
differences which identify members of those 
categories separately.   The model would thus 
form an analogical representation of the two 
categories. 

This model makes two general predictions 
about the course of learning of multiple 
analogical categories.  First, the model predicts 
that category learning should begin with the 
formation of ‘macrocategories’ (pairs of 
categories that share common features or 
common analogical structure).  Learning 
should subsequently proceed to the formation 
of fully-differentiated final categories by the 
division of those initial macrocategories.  
Second, the model predicts that the learning of 
pairs of similar or analogical categories should 
occur at roughly the same time: once a learner 
has successfully identified members of one 
category in such a pair, they will rapidly 
identify members of the other category.  
Support for the model comes from 
experimental confirmation of these predictions.  
Further support comes from the relatively good 
fit the model gives to individual participant 
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performance in a multi-category classification 
experiment.  The next section describes this 
support in more detail.  

 
EMPIRICAL SUPPORT FOR LEARNING 
BY SUBSTRUCTURE PRIMING 

 
We tested the predictions described above in 

a category learning task where participants had 
to simultaneously learn 4 different categories, 
A, B, C and D.  The four categories being 
learned consisted of two pairs of similar 
categories (category A was similar to category 
B, category C was similar to category D). 
Exemplars of these categories were composed 
of a number of colored geometric shapes, and 
were produced by computer according to the 
category rules for the four different categories. 
Two category rules (for categories A and B) 
had a complex structure, based on the 
quantities of the elements (e.g. same number of 
yellow and red circles in category A, different 
number in category B); the other two rules had 
a simpler structure (presence of a distinctive 
element - e.g. a blue triangle in category C, a 
green triangle in D). 

Analysis of learning times in the different 
categories showed that learning of one 
category was quickly followed by learning of 
the other similar category, but was completely 
unrelated to the learning time of the two other, 
different categories.  Analysis of errors showed 
that even before any category is learned, 
participants’ incorrect responses were 
significantly more likely to come from the 

correct macrocategory (i.e. participants 
answering A when the correct category 
response was B, participants answering C 
when the correct response was D).  Both of 
these results correspond to the model’s 
predictions.  

To test the model’s match with participants 
behavior in the category-learning task, the 
model was fitted to each participant’s 
individual responses in the experiment.  For 
each participant a genetic algorithm was used 
to find the combination of parameter values 
which allowed the model to best reproduce the 
specific sequence of answers given by that 
participant, and the ease with which that 
participant solved the task (that is, the number 
of examples the participant needed to identify 
all four categories).  In fitting the model to 
each participant’s data, the model was shown 
the same examples (in the same order) 
originally shown to the participant, and 
Cohen's Kappa Coefficient was computed as a 
measure of the agreement between the 
responses produced by the participant and the 
responses produced by the model.  Both the 
Kappa values achieved and the overall 
agreement proportions (i.e. the number of 
examples for which model and participant gave 
the same response, divided by the total number 
of examples seen) were significantly more than 
the random level, for all the participants, thus 
showing that the model is able to accurately 
reproduce the human participants' behavior 
(Figure 1).  It was noticeable that the model’s 
fit was better for
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Figure 1. Match between model responses and participant responses for individual participants.  Each circle 
represents the best fit between the model and one individual participant.  The left graph shows the maximum 
values of the Kappa Coefficient obtained in fitting the model for each participant; the right graph shows the 
maximum agreement proportion for the same fit.  Both are given as a function of the number of examples 
needed to complete the classification task. In most cases the model obtained a close level of agreement with 
participants' responses. 
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participants who completed the category 
learning task relatively quickly: as the right 
graph in Figure 1 shows, the model produced 
the same response as the participant at least 
60% of the time for all participants who 
required 100 examples or less to complete the 
task (expected random agreement is 25%).   

 
COMPUTATIONAL EFFECTIVENESS 
OF ANALOGICAL LEARNING 
In this section we compare the effectiveness of 
progressive alignment and of substructure 
priming as category learning mechanisms.  We 
focus on the contrasting performance of these 
mechanisms at different stages in the learning 
process.   To make this comparison we define a 
measure of computational effectiveness, or 
learning rate per computational cost, as 
follows: 
(1) the computational  effectiveness of a 

learning mechanism at a given stage of 
learning is equal to the probability of 
learning taking place when a new 
exemplar is presented at that stage, 
divided by the computational cost of 
processing that new exemplar.    

 
PROGRESSIVE ALIGNMENT 
The progressive alignment process of category 
learning described above depends on a 
structure-mapping comparison between each 
new exemplar and potentially every stored 
generalization or stored exemplar.  The 
computational complexity or cost of 
progressive alignment thus depends on two 
factors: the computational cost of each 
structure-mapping comparison, and the number 
of pairwise comparisons that are necessary.       

Because structure-mapping is a graph-
isomorphism process which must consider 
a combinatorial number of potential 
matches between structural elements from 
the pair of structures being compared to 
generate an optimal mapping between 
those structures, it is intuitively an NP-hard 
problem (Evans, Gedge, Muller, van Rooij, & 
Wareham, 2008; Veale & Keane, 1997), with a 
complexity of up to O(2N), where N is the 
average number of features and relations in the 

structures being compared.  The average 
complexity of structure-mapping has been 
much debated in the literature.  Here we focus 
on the computational cost dictated by the 
number of pairwise comparisons between a 
new exemplar and stored exemplars or 
generalizations.   

As described above, in the SEQL model of 
progressive alignment a new exemplar is 
compared sequentially to the series of stored 
generalizations, ordered by number of 
previously assimilated exemplars.    This series 
of comparisons stops when the new exemplar 
has a high enough match to a given 
generalization to be assimilated to that 
generalization.  If the new exemplar does not 
match any stored generalization, it is then 
compared to all stored exemplars, and if it 
doesn’t match any of those it is stored as an 
exemplar itself.    

If we assume that a given new exemplar 
must be compared to M stored representations 
before a match is found, and if we assume a 
fixed cost C for each comparison, the cost of 
this repeated series of comparisons is 
proportional to M×C.  Two factors influence 
M: the value of the match threshold T, and the 
number of successful generalizations already 
found.  These factors have different influences 
at different stages in learning.  Consider an 
early stage of learning, where a number of 
exemplars have been seen and stored, but no 
successful generalisations have yet been 
formed (see Figure 2).   If T is high (as 
required to give a good fit to human learning 
performance), then the chance of a new 
exemplar having a match greater than T to one 
of those stored exemplars will be low. The 
number of sequential comparisons required to 
find such a match (or to reach the end of the 
list of stored exemplars) will thus be large.  
Early in learning, therefore, the computational 
cost of the progressive alignment process will 
rise proportional to the number of exemplars 
seen so far, multiplied by the cost of structural 
alignment against each exemplar.  Since 
learning effectiveness is equal to learning rate 
divided by computational cost, this means that 
the learning effectiveness of the progressive 
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Figure 2.  Sketch of relationship between number of 
exemplars seen and the computational effectiveness 
of progressive alignment category learning.  
 
alignment process will decline rapidly at this 
stage of learning. 

Next consider an intermediate stage of 
learning, where a small number of relatively 
successful generalizations have been formed 
(generalizations that have already assimilated a 
certain number of exemplars).  The SEQL 
model compares a new exemplar first against 
generalizations sorted in order of success, and 
then against stored exemplars.  Since the 
generalizations available at this stage of 
learning have already been relatively 
successful (they have already had a match 
greater than T to some exemplars), the chances 
of a new exemplar successfully matching one 
of these generalizations is increased. Since 
these successful generalizations are considered 
first, the number of comparisons, M, required 
before a successful match is found will be less 
at this stage of learning than it was at early 
learning.  The learning rate at this stage of 
learning will thus rise and computational cost 
per learning event will fall. The effectiveness 
of the progressive alignment mechanism will 
thus begin to increase at this stage. 

Finally consider a late stage of learning, 
where a number of highly successful 
generalizations have been formed 
(generalizations that have already assimilated a 
large number of exemplars).  Again, since the 
generalizations available at this stage have 
already been highly successful (they have 
already had a match  greater than T to a large 
exemplars), the chances of a new exemplar 
successfully matching one of these 
generalizations is high. Since these successful 
generalizations are considered first, the number 
of comparisons a successful match is found 
will be less at this stage of learning than at the 
earlier stages.  Learning rate will be relatively 
high at this stage, while computational cost per 
exemplar will be relatively low, resulting in a 
high degree of effectiveness for the progressive 
alignment mechanism at this stage. 

 
SUBSTRUCTURE PRIMING 

In progressive alignment, the computational 
cost of processing a newly presented exemplar 
is a function of the number of exemplars 
already seen and the degree of learning that has 
already taken place (because that new 
exemplar is compared to already formed 
generalizations and to previously stored 
exemplars until a match is found).  In the 
substructure priming model of analogical 
learning, the cost of processing a newly 
presented exemplar is dictated by a number of 
model parameters, including the size of the two 
memories used by the model to hold candidate 
rules and failed rules, and also the number of 
times the different ‘rule generation’ methods 
used by the model are applied for each 
exemplar.  These parameters are fixed across a 
given run of the model (neither memory size 
nor number of candidate rules generated can 
change within a given model run), and so the 
cost of processing a new exemplar in this 
model is a constant which does not change as 
more exemplars are presented.  

In assessing the learning effectiveness of 
substructure priming at different stages of 
learning, then, we need not consider any  
changes in computational cost.  The only factor 
that can alter from stage to stage is the model’s 
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Figure 3.  Sketch of relationship between number of 
exemplars seen and the computational effectiveness 
of substructure priming category learning.  

 
learning rate.  The learning rate, for this model, 
is equal to the rate at which a rule already in 
memory is removed and replaced with a more 
successful rule.  Early in learning, such 
learning events will occur relatively frequently: 
the initial randomly generated rules stored in 
memory will be relatively poor and so will 
have a relatively high chance of being replaced 
by some improved rule.  Further, since the 
model preferentially stores successful rules and 
uses those rules to produce new rules, the rate 
of production of successful rules should 
increase quickly at this stage of learning.  
Since computational cost per exemplar is a 
constant, and during early learning the learning 
rate increases as more exemplars are presented, 
learning effectiveness of the model will also 
increase at this stage of learning (see Figure 3). 

As learning proceeds, the model’s candidate 
rule memory will gradually fill with successful 
rules.  At the middle stage of learning, the 
chance of the model randomly generating a 
new rule which is more successful than one of 
those already successful rules will necessarily 
fall.  Learning events, in other words, will 
become rarer and rarer at this stage.  This 

means that as learning proceeds the initial 
increase in learning effectiveness of the 
substructure priming mechanism will slow and 
gradually reverse.  Finally, as the model 
approaches the later stages of learning, this 
decline in effectiveness will increase, as the 
chance of an improved rule being produced at 
random falls lower and lower. 

This analysis suggests that a substructure 
priming mechanism for forming analogies will 
have a stronger impact and be more effective at 
the beginning of a learning process, when 
many candidate rule structures are available to 
a learner and need to be considered during 
learning.  An explicit structural comparison 
process, by contrast, would be too 
computationally expensive to be effective until 
later in learning (when a number of successful 
generalizations have already been found, 
limiting the number of comparisons necessary 
to process a newly presented exemplar 
(compare Figures 2 and 3).  The most 
computationally effective account of 
analogical learning, we suggest, is a 
combination of these two processes, with a 
gradual transition from substructure priming to 
structure-mapping comparison as more and 
more complex rule structures are learned.   In 
this two-process view of analogical learning, 
the priming mechanism first acts to generate an 
initial set of relatively successful candidate 
rules for the categories to be learned: once 
random rule-generation processes fail to 
produce a noticeable improvement in these 
rules an explicit structure-mapping comparison 
process is used to find and test more 
structurally complex rules. 

 
RELATING ANALOGY TO TWO-
PROCESS MODELS OF LEARNING 
One interesting line of research by  Todd 
Maddox and colleagues (see e.g. Maddox, 
Ashby, Ing & Pickering, 2004; Maddox, 
Filoteo, Hejl, & Ing,, 2004; Maddox & Ing, 
2005; Filoteo, Maddox, Ing, & Song, 2007; 
Zeithamova & Maddox,, 2006) identifies two 
distinct mechanisms which can be used in  
general learning. These mechanisms are 
usually presented in terms of the identification 

ef
fe

ct
iv

en
es

s

Number of exemplars seen

Mid stages of learning. memory filled with 
successful rules, ands improvements to those 
rules occur more and more rarely.  Increase in 
effectiveness slows and reverses. 

Late stages . 
chance of 
improvement in 
currently successful 
rules very low: 
most modifications 
give failing rules. 
Effectiveness falls. 

Early stages of learning.  Random generation of rules 
produces learning events (successful rules). Priming by 
successful rules already in memory gradually increases 
learning rate: effectiveness increases.   



Fintan Costello and Cesare Bianchi 

115 

of a link between stimuli and rewards. One 
mechanism involves explicit hypothesis 
generation and testing, and requires the learner 
to generate hypotheses about what aspects of a 
stimuli will successfully predict the occurrence 
of a reward, and to use and test those 
hypotheses during the course of learning. This 
mechanism is normally seen as a voluntary, 
conscious process driven by executive 
attention and working memory. 

A second, quite separate, mechanism 
involves the formation of implicit associations 
between stimuli and rewards. This mechanism 
is normally seen as occurring automatically, 
based on involuntary perception of stimuli-
reward co-occurrence. This associative 
mechanism is not under conscious control and 
is assumed not to involve executive attention.  

These ‘implicit’ and ‘explicit’ processes 
described by Maddox and his colleagues map 
well to the explicit structure-mapping 
comparison process and the implicit 
substructure priming process for analogical 
learning. The computationally intensive nature 
of explicit structure-mapping comparison, and 
the fact that explicit comparison is a form of 
directed search, suggests that the structure 
mapping comparison can be usefully seen as a 
type of explicit hypothesis-testing for learning.  
This suggests that structure-mapping 
comparison during learning is a voluntary, 
conscious process controlled by executive 
attention.  The random, undirected nature of 
the substructure priming suggest that this 
mechanism can be seen as a form of implicit, 
associative learning, occurring unconsciously 
and without high memory demands.   

Maddox and colleagues have reported a 
range of substantial differences between 
explicit and implicit learning mechanisms, in 
terms, for example, of behavioral dissociation 
(implicit learning is influenced by the delay 
between item presentation; explicit learning is 
not) of neural circuitry (implicit learning is 
driven by a dopamine-based reward signal in 
the caudate nucleus , while explicit learning is 
mediated by a circuit that includes the anterior 
cingulate and the prefrontal cortex), and of 
reasoning deficits (with patients with 

Parkinson’s disease able to carry our rule-
based explicit learning but not implicit 
learning, possibly because of the low levels of 
dopamine associated with that disease).  Given 
our mapping between the two forms of 
analogical learning and the two implicit and 
explicit general learning mechanisms we 
suggest that these same distinctions may apply 
to structure-mapping comparison and 
substructure priming.    

 
CONCLUSIONS 

Since substructure priming is 
computationally cheaper than structural 
comparison, we think priming is more likely to 
be important when very large amounts of 
potentially relevant information must be 
filtered: that is, at the beginning of the learning 
process. Later in learning however, the 
explanatory advantages of explicit structural 
comparison may offset its greater 
computational cost, especially in situations 
where relatively complex rule structures are 
already available for comparison  

The overall picture we paint, then, is one 
where structural commonalities and alignments 
arise initially via a relatively simple priming 
process during learning, without any explicit 
comparison process being activated or 
engaged. Once this priming mechanism 
provides a base of relatively complex rule 
structures, we suggest explicit structural 
comparison processes may come into play.  

The distinction we draw between explicit 
comparison processes for analogical learning 
and implicit priming based processes may tell 
us something about analogy as a conscious, 
executive process of explicit comparison which 
develops from and builds on an implicit 
unconscious process of structural priming. It 
may also tell us something about the 
relationship between explicit analogy in 
humans and the origins of analogy via implicit 
processes in other animals, and indeed about 
the development of analogy from an implicit to 
an explicit process in children. 
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